Influence of Separation on Heat Transfer and Hydrodynamic of a Flat Working Surface of Heat Power Equipment


The results of an experimental study of heat transfer, friction, velocity and temperature characteristics as well as turbulence structure on the flat surface are presented for relaxation zone after a separation at free stream turbulence Tue≈0,2 % in the range of velocities 5–10 m/s. The type of a separation (laminar, transitional or turbulent) is adjusted by velocity, shape of an inlet edge of the plate and length of an interceptor, installed in the end of test section of the wind tunnel. The dissimilarity of an internal structure of a hydrodynamic and thermal boundary layers and different rates of their recovery in relaxation zone were confirmed. The similarity equation was proposed for calculation of heat transfer intensification depending on turbulent viscosity.

Publication year: 
С. 28—35., Іл. 5. Табл. 1. Бібліогр.: 16 назв.

1. Bradshaw P., Wong F.Y.F. The Reattachment and Relaxation of a Turbulent Shear Flow // J. Fluid Mech. — 1972. — 52, pt. 1. — P. 113—135.
2. Ruderich R., Fernholz H.H. An Experimental Investigation of a Turbulent Shear Flow with Separation, Reverse Flow, and Reattachment // Ibid. — 1986. — 163. — P. 283—322.
3. Castro I.P., Haque A. The Structure of a Turbulent Shear Layer Bounding a Separation Region // Ibid. — 1987. — 179. — P. 439—478.
4. Simpson R.L. Turbulent Boundary Layer Separation // Ann. Rev. Fluid Mech. — 1981. — P. 205—234.
5. Дыбан Е.П., Эпик Э.Я., Юшина Л.Е. Влияние турбулентности внешнего потока на развитие пограничного слоя за областью отрыва // Промтеплотехника. — 1991. — 13, № 2. — С. 3—10.
6. Дыбан Е.П., Эпик Э.Я., Юшина Л.Е. Спектральные характеристики пограничного слоя, развивающегося за отрывом // Там же. — 13, № 3. — С. 12—19.
7. Dyban E.P., Epik E.Ya., Yushyna L.E. Heat Transfer on the Surface of Longitudinally Streamlined Bodies in the Presence of Closed Separation and External Flow Turbulization // 10th International Heat Transfer Conf., Brighton, UK, 1994. — 3. — P. 211—216.
8. Epik E.Ya., Suprun T.T., Yushyna L.E. The Influence of Turbulence on the Mechanism of Heat Transfer and Selective Properties of Bypass Transition // 2nd Intern. Symp. on Turbulence, Heat and Mass Transfer, Delft, Netherlands. — 1997. — P. 243—252.
9. Быстров Ю.А., Исаев С.А., Кудрявцев С.А., Леонтьев А.И. Численное моделирование вихревой интенсификации теплообмена в пакетах труб. — СПб.: Судостроение, 2005. — 392 с.
10. Lamballais E., Silvestrini J., Laizet S. Direct Numerical Simulation of a Separation Bubble on a Rounded Finitewidth Leading Edge // Intern. Journal of Heat and Fluid Flow. — 2008. — 29. — P. 612—653.
11. Castro I.P., Epik E.Ya. Boundary Layer Relaxation after a Separated Region // Tenth Symp. on Turbulent Shear Flows, Pennsylvania, USA. — 1995. — 6 p.
12. Castro I.P., Epik E.Ya. Boundary Layer Development after a Separated Region // J. Fluid Mech. — 1998. — 374. — P. 91—116.
13. Дыбан Е.П., Эпик Э.Я. Тепломассообмен и гидродинамика турбулизированных потоков. — К.: Наук. думка, 1985. — 296 с.
14. Kутателадзе С.С., Леонтьев А.И. Теплообмен и трение в турбулентном пограничном слое. — М.: Энергоатомиздат, 1987. — 287 с.
15. Dyban E.P., Epik E.Ya., Suprun T.T., Kuimov S.V. Heat Transfer of Plate in the Presence of Laminar-Turbulent Transition and Increased Turbulence of the External Flow // 1st Symp. on Turbulence, Heat and Mass Transfer, Lisbon, Portugal. — 1994. — P. I.12.1—I.12.4.
16. Dyban E.P., Epik E.Ya. Internal Structure of Turbulent Boundary Layer at Unfavorable Pressure Gradient and Increased Turbulence of External Flow // Energetika, Lietuvas Moksly Akademija. — 1992. — N 3. — P. 110—118.

2011-2-4.pdf336.39 KB

Тематичні розділи журналу