Synthesis and Characterization of Nanodispersed Powders of Tin Oxide (IV) from Tin Oxalate (II)

We synthesize powders of tin oxide (IV) from tin (II) oxalate by thermal method with and without chemical pretreatment. The microstructures of samples are investigated by XR-diffraction and microscopic methods of analysis. We establish that the powders obtained by both methods have a tetragonal structure of rutile. It was determined that the sample obtained by chemical method followed by heat treatment, has a more porous structure than the sample obtained by thermal method. The lattice parameters and size of crystallite of the samples are calculated. The microscopic and XR diffraction method of analysis shows that sizes of obtained powders are in nanometer range. According to the calculated crystallite size of the samples SnO2 is in the range from 6,9 to 27,4 nm, while according to microscopy it is from 5 to 50 nm.

Publication year: 
С. 151—155. Іл. 4. Табл. 1. Бібліогр.: 16 назв.

1. Особенности роста и анализ сенсорных свойств нитевидных кристаллов SnO2 / П.Б. Кочергинская, Д.М. Иткис, Е.А. Гудилин, Ю.Д. Третьяков // Альтернативная энергетика и экология. — 2007. — 53, № 9. — С. 11—15.
2. S. Munnix and M. Schmeits, “Surface electronic structure of tin (IV) oxide”, Solid State Commun, vol. 43, p. 867, 1982.
3. Lin Tan et al., “Hydrothermal Synthesis of SnO2 Nanostructures with Different Morphologies and Their Optical Properties”, J. of Nanomaterials, vol. 2011, Article ID 529874, p.10, 2011.
4. M. Batzill and U. Diebold, “The surface and material science of tin oxide”, Progress in Surface Science, vol. 79, pp. 7—154, 2005.
5. Электродные материалы на основе нанокристаллических оксидов олова, марганца и кобальта / Э.В. Панов, С.М. Малеванный, Д.В. Коломыцев и др. // Хімія: Вісник Харківського нац. ун-ту. — 2010. — 41, № 18. — С. 224—230.
6. E. Comini, “Metal oxide nano-crystals for gas sensing”, Analytica Chimica Acta, vol. 568, no. 1-2, pp. 28—40, 2006.
7. Обвинцева Л.А. Полупроводниковые металлооксидные сенсоры для определения химически активных газовых примесей в воздушной среде // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). — 2008. — LII, № 2. — С. 113—121.
8. Dong Xin Wang et al., “Synthesis of SnO2 Nanoparticles with Varying Particle Sizes and Morphologies by Hydrothermal Method”, Advanced Materials Research, vol. 415, no. 4, pp. 585—589, 2012.
9. J.K. Yong et al., “Syntheses of monodispersed SnO2 and CeO2 nanoparticles through the self-capping role of 2-ethylhexanoate ligands”, New J. of Chemistry, vol. 31, no. 2, pp. 260—264, 2007.
10. X. Song et al., “Graine growth kinetics of SnO2 nanocrystals Synthesized by precipitation method”, J. of Wuhan University of Technology: Mater. Sci. Ed, vol. 25, no. 6, pp. 929—934, 2010.
11. J. Surykanth et al., “Functionalization of MWCNT with SnO2 thorough sol-gel route”, J. Optoelectr. Biomed. Mater., vol. 3, is. 2, pp. 31—38, 2011.
12. Q. Kuanget al., “Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition”, Carbon, no. 44, pp. 1166—1172, 2006.
13. O. Alizadeh et al., “Low temperature ethanol gas sensor based on SnO2/MWNTs nanocomposite”, World Academy of Science, Engineering and Technology, no. 49, pp. 185—188, 2009.
14. H. Taib and C. Sorrell, “Preparation of tin oxide”, J. Aust. Ceram. Soc., no. 43, pp. 56—61, 2007.
15. M. Batzill and U. Diebold, “The surface and materials science of tin oxide”, Progress in Surface Science, no. 79, pp. 47—154, 2005.
16. J. Bai et al., “Microwave-polyl Process for Functionalizing Carbon Nanotubes with SnO2 and CeO2 Coating”, Chem. Let., no. 1, pp. 96—97, 2006.

2012-2-20.pdf423.6 KB

Тематичні розділи журналу