Effect of Alkali Metals Ions on Growth and Biomass Accumulation of Lipid (Metabolism) in Chlorella Vulgaris

In this paper, we analyze the influence of nutrient medium on the growth of algae biomass species Chlorella vulgaris. By employing methods of microscopy, one- and two-dimensional thin layer chromatography, as well as by using mathematical methods of interpolation and approximation of data, we show that reduction of nitrogen concentration, increase of salinity and concentration of potassium drastically decrease the biomass growth. The amount of lipids increases to 10–15 % under nitrogen deficiency, moderate salinity (2,5 g/l NaCl) and in the joint action of both factors. The content of fatty acids and the number of minor factions also increases. At concentration of NaCl 2,5 g/l the content of 16:0 fatty acids increases, while the percentage of eicosapentaenoic acid 20:5-3 is at the minimum level and increases by reducing the salinity to optimal level. The increase of potassium ions concentration does not promote the accumulation of lipids in the biomass of microalgae Chlorella vulgaris. The increase of salinity (2,5 g/l NaCl) can reduce energy costs for algae cultivation by increasing the amount of lipids within less period of time.

Publication year: 
2012
Issue: 
3
УДК: 
66.098:546.11
С. 12—17. Іл. 6. Табл. 1. Бібліогр.: 11 назв.
References: 

1. Q. Hu, “Chapter 5: Environmental effects on cell composition”, in Handbook of Microalgal Culture, A. Richmond, Ed., Blackwell Science Ltd, Oxford OX2 0EL, UK, 2004, pp. 83—93.
2. E.W. Becker, Microalgae: Biotechnology and Microbiology, ambridge University Press, 1994, 295 p.
3. S. Chinnasamy, B. Ramakrishnan, A. Bhatnagar, K.C. Das, “Biomass Production Potential of a Wastewater Alga Chlorella vulgaris ARC 1 under Elevated Levels of CO2 and Temperature”, Int. J. of Molecular Sciences, vol. 10, pp. 518—532, 2009.
4. S. Hatano, K. Kabata, M. Yoshimoto, H. Sadakane, “Accumulation of Free Fatty Acids during Hardening of Chlorella ellipsoidea”, Plant Physiology, vol. 70, pp. 1173—1177, 1982.
5. M.M. Basova, “Fatty acid composition of lipids in microalgae”, Int. J. on Algae, vol. 7, pp. 33—57, 2005.
6. Ипатова В.И. Адаптация водных растений к стрессовым факторам среды. — М.: Графикон-принт, 2005. — 224 с.
7. D. Hazeelbeck, E.H. Dunlop, “Photosynthetic oil production in a two-stage bioreactor”, U.S. Patent 20080086931A1, Int. CI. A01G 7/10, 17.04.2008.
8. E.G. Bligh, W.J. Dyer, “A rapid method for total lipid extraction and purification”, Can. J. Biochem. Physiol., no. 37, pp. 911—917, 1959.
9. T. Lewis, P.D. Nichols, T.A. McMeekin, “Evaluation of extraction methods for recovery of fatty acids from lipidproducing microheterotrophs”, J. of Microbiol. Methods, no. 43, pp. 107—116, 2000.
10. E.W. Hammond, Chromatography for the analysis of lipids, Boca Raton, USA: CRC Press, 2000.
11. J. Harwood, F. Gunstone, F. Padley, The lipid handbook, Cambridge: University Press, 1994.

AttachmentSize
2012-3-2.pdf338.93 KB

Тематичні розділи журналу

,