Genetic Regulation and Phenotypic Expression of the Properties of Biogenic Magnetic Nanoparticles in Magnetotactic Bacteria and Human

By employing the bioinformatics methods, we consider the similarity between the genes of magnetosome island of magnetotactic bacteria and human genes for establishing the degree of homology and determination of functional class of proteins. We analyze the most meaningful coincidences between the genes of magnetosome island of bacteria of Magnetospirillum gryphiswaldense and human genes. We uncover the essential smoothing mainly among proteins of functional class. The process of biomineralization of magnetite in МТB, namely MamВ, MamЕ, MamА, MamN, MamО, MamМ can’t be conducted without these proteins. They have the well known common functions or belong to the same family. The analysis of homologues of regulator proteins (what regulate a form, size and amount of parts of Fe3O4, and also regulate formation of chain and magnitosome vesicule) show that only one protein of MamК can be a hypothetical homologues with the human proteins. The research results demonstrate there is no class of regulatory proteins in humans. There is strict control on the size of genetic and structural characteristics of biogenic magnetite.

Publication year: 
2012
Issue: 
3
УДК: 
621.31:537.523.3
С. 18—23. Табл. 2. Бібліогр.: 26 назв.
References: 

1. R.B. Frankel, R.P. Blakemore, R.S. Wolfe, “Magnetite in freshwater magnetotactic bacteria”, Science, vol. 203, pp. 1355—1356, 1979.
2. Дудченко Н.А. Свойства биогенных магнитных минералов // Минералог. перспективы: Матер. Междунар. семинара, Сыктывкар, Республика Коми, 17—20 мая 2011 г. — Россия, 2011. — С. 45—47.
3. Горобец С.В., Горобец О.Ю. Свойства и функции биогенных магнитных наночастиц в организме человека // Наноструктурное материаловед. — 2011. — № 3. — С. 110—121.
4. P.P. Grassi-Schultheiss, F. Heller and J. Dobson, “Analysis of magnetic material in the human heart, spleen and liver”, BioMetals, vol. 10, pp. 351—355, 1997.
5. J.L. Kirschvink, A. Kobayashi-Kirschvink, B.J. Woodford, “Magnetite biomineralization in the human brain”, Proc. Natl Acad. Sci. USA, vol. 89, pp. 7683—7687, 1992.
6. D. Hautot, Q.A. Pankhurst, N. Khan, J. Dobson, “Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue”, Proc. Biol Sci., vol. 270, no. 7, pp. 62—64, 2003.
7. D. Hautot, Q.A. Pankhurst, Ch.M. Morris, A. Curtis, “Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients”, Biochem. Biophys. Acta, vol. 1772(1), pp. 21—25, 2007.
8. A. Kobayashi, N. Yamamoto, J. Kirschvink, “Studies of Inorganic Crystals in Biological Tissue: Magnetite in Human Tumor”, Reprinted from Journal of the Japan Society of Powder and Powder Metallurgy, no. 44, p. 94, 1997.
9. Чехун В.Ф., Горобець С.В., Горобець О.Ю, Дем’яненко І.В. Магнітні наноструктури в пухлинних клітинах. Застосування методів скануючої зондової мікроскопії для дослідження структурної організації магніточутливої фази в пухлинних клітинах карциноми Ерліха // Вісн. НАН України. — 2011. — № 11. — С. 13—20.
10. Чехун В.Ф., Горобець С.В., Горобець О.Ю, Дем’яненко І.В. Магніточутливі наноструктури ендогенного походження у клітинах карциноми Ерліха // Наноструктурное материаловедение. — 2011. — № 2. — C. 102—109.
11. S. Ullrich, M. Kube, S. Schübbe, R. Reinhardt, “A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth”, J. Bacteriol., vol. 187(21), pp. 7176—7184, November 2005.
12. D. Murat, A. Quinlan, H. Vali, A. Komeili, “Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle”, Proc. Natl. Acad. Sci. USA, vol. 107(12), pp. 5593—5598, 23 March 2010.
13. N. Zeytuni, E. Ozyamak, K. Ben-Harush, G. Davidov et al., “Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly”, Proc. Natl. Acad. Sci. USA, vol. 108(33):E480-7, 16 Aug 2011.
14. A. Komeili, H. Vali, T.J. Beveridge et al., “Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation”, Proc. Natl. Acad. Sci. USA, vol. 101(11), pp. 3839—3844, 16 March 2004.
15. A. Scheffel, A. Gärdes, K. Grünberg, G. Wanner et al., “The Major Magnetosome Proteins MamGFDC Are Not Essential for Magnetite Biomineralization in Magnetospirillum gryphiswaldense but Regulate the Size of Magnetosome Crystals”, J. Bacteriol., vol. 190(1), pp. 377—386, January 2008.
16. A. Lohe, S. Ullrich, E. Katzmann, S. Borg et al., “Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization”, PLoS One, vol. 6(10), 2011.
17. D.A Bazylinski., R.B. Frankel, “Magnetosome formation in proсaryotes”, Nature Reviews Microbiology, vol. 2, pp. 217—230, 2004.
18. M. Richter, M. Kube, D.A. Bazylinski, T. Lombardot et al., “Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group-Specific Genes Implicated in Magnetosome Biomineralization and Function”, J. Bacteriol., vol. 189(13), pp. 4899—4910, July 2007.
19. S. Schübbe, C. Würdemann, J. Peplies, U. Heyen et al., “Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense”, Appl. Environ. Microbiol., vol. 72(9), pp. 5757—5765, September 2006.
20. S. Schubbe, Ch. Wurdemann, J. Peplies, U. Heyen et al., “Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense”, Appl. Environ. Microbiol., vol. 72, no. 9, pp. 5757—5765, 2006.
21. F. Brem, A.M. Hirt, M. Winklhofer, K. Frei, Y. Yonekawa, H.-G. Wieser, J. Dobson, “Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue”, J. R. Soc. Interface, no. 3, pp. 833— 841, 2006.
22. M. Arthur, Lesk Introduction to Bioinformatics, — Oxford University Press Inc., 2002, 255 p.
23. G. Lyubartseva, J.L. Smith, W.R. Markesbery, M.A. Lovell, “Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer's disease brain”, Brain Pathol, vol. 20(2), pp. 343—350, 2010.
24. A.A. Guffanti, Y. Wei, S.V. Rood, T.A. Krulwich, “An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+”, Mol. Microbiol., vol. 45, no. 1, pp. 145—153, 2002.
25. N. Kieper, K.M. Holmström, D. Ciceri, F.C. Fiesel, “Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1”, Exp. Cell Res., vol. 15, no. 316(7), pp. 1213—1224, 2010.
26. R. Sultana, M. Perluigi and D.A. Butterfield, “Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis”, Acta Neuropathol., vol. 118, no. 1, pp. 12009.

AttachmentSize
2012-3-3.pdf211.08 KB

Тематичні розділи журналу

,