Structure and Morphology of Zirconium Oxide (IV) Powders Synthesiized by the Thermal Method from Different Precursors

ZrO2 powders were synthesized from different precursors by the thermal method: zirconium hydroxide (ZrO(OH)2) and zirconium oxalate (ZrOC2O4). In synthesized samples by XRD analysis it was researched phase composition; sample, synthesized from ZrO(OH)2, consists of, mainly, the monoclinic modification, and sample, synthesized from ZrOC2O4 – of the tetragonal modification. It was calculated crystal grates parameters of obtained ZrO2 powders by the method of XRS analysis. It was fined crystallite’s sizes: for standart, synthesized from ZrO(OH)2, and sample, synthesized from ZrOC2O4, respectively, 74,5 nm and 29,4 nm. By the methods of scanning (MIRA3 TESCAN) and translucent (ПЕМ 125К) electron microscopy it was determined morphology and minimal size of ZrO2 particles. Sample, synthesized from ZrO(OH)2, has granule structure with minimal particle size 100 nm, and sample, synthesized from ZrOC2O4 has porous structure with minimal grain size 30 nm. It was determined the specific surface and particle size of ZrO2 samples by the desiccator method of benzene steam adsorption, which are for sample, synthesized from ZrO(OH)2, and sample, synthesized from ZrOC2O4, respectively, 10,4 m2/g, 104,9 nm і 39,1 m2/g, 27,9 nm. It was made comparison of ZrO2 particles size calculated on the base of data according to different methods.

Publication year: 
С. 133—136. Іл. 3. Табл. 2. Бібліогр.: 12 назв.

1. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. — М.: ИКЦ “Академкнига”, 2006. — 312 с.
2. Савельев Г.Г., Стась Н.Ф. Научные исследования и технологические разработки на кафедре общей и не- органической химии Томского политехнического университета // Изв. Томского политехн. ун-та. — 2005. — 308. — С. 244—251.
3. J.M.E. Matos et. al., “Reflus synthesis and hydrothermal processing of ZrO2 nanopowders at low temperature”, Mater. Chem. Phys., vol. 117, pp. 455—459, 2009.
4. J.B. Miller and E.I. Ko, “Acidic Properties of Silica-Containing Mixed Oxide Aerogels: Preparation of Zirconia- Silica and Comparison to Titania-Silica”, J. of Catalysis, vol. 159, pp. 58—69, 1996.
5. Q.J. Zhang et al., “Sol-gel derived ZrO2—SiO2 highly reflective coatings”, Int. J. Inorg. Mater, vol. 2, pp. 319— 326, 2000.
6. C. Flego et al., “Synthesis of mes-oporous SiO2—ZrO2 mixed oxides by sol-gel method”, Catal. Commun., vol. 2, pp. 43—49, 2001.
7. Q.J. Huang et al., “Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites”, Mater. Chem., vol. 15, pp. 1995—2002, 2005.
8. A.K. Jamting et al., “Measurement of the Micro Mechanical Properties of Sol-gel TiO2 Films”, Thin Solid films, vol. 322, pp. 189—194, 1998.
9. Недома И. Расшифровка рентгенограмм порошков. — М.: Металлургия, 1975. — С. 65—421.
10. Вест А. Химия твердого тела. — М.: Мир, 1988. — 558 с.
11. A.O. Dieng and R.Z. Wang, “Literature review of solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology”, Renewable and Sustainable Energy Reviews, vol. 5, pp. 313—342, 2001.
12. Z.G. Wu et al., “Preparation of zirconia aerogel by heating of alcohol-aqueous salt solution”, J. of Non-Crystalline Solids, vol. 330, pp. 274—277, 2003.

2012-3-22.pdf495.1 KB

Тематичні розділи журналу