An Estimate for the Rate of Convergence in the Central Limit Theorem for Integrals of Shot Noise Processes

Автори

In this paper, we study the rate of convergence of the normalized integrals of stationary shot noise processes in the central limit theorem. More precisely, we establish an estimate for the distance between pre-limit distribution functions of the normalized integrals and limit Gaussian one. The key machinery of the proof is the study of convergence rates in terms of characteristic functions with a subsequent use of Berry–Esseen bound. We also give an analogous estimate of convergence rates in Lévy metric and an estimate for integrals with explicit normalization. The convergence rate in the bound obtained in Theorem 3 turns out to depend on the spectral characteristics of the input Lévy process and of the response function. The key role is played here by the behavior of the Fourier transform of the response function in the neighborhood of origin. The estimates obtained are of both theoretical and practical interest. They can be used in statistics of shot noise processes, specifically in testing hypotheses concerning unknown response function.

Publication year: 
2012
Issue: 
4
УДК: 
519.21
С. 66—71. Бібліогр.: 15 назв.
References: 

1. S.O. Rice, “Mathematical analysis of random noise, I”, Bell System Tech. Jour, vol. 23, pp. 282–332, 1944.
2. S.O. Rice, “Mathematical analysis of random noise, II”, Bell System Tech. Jour., vol. 24, pp. 46–156, 1945.
3. L. Takács, “Über die wahrscheinlichkeitstheoretische Behandlung der Anodenstromschwankungen von Elektronenröhren”, Acta Phys. Acad. Sci. Hung., vol. 7, pp. 25–50, 1957.
4. Picinbono B. et al., “Photoelectron shot noise”, J. Math. Phys., vol. 11, pp. 2166–2176, 1970.
5. Dogliotti R. et al., “Error probability in optical fiber transmission systems”, IEEE Trans. Inf. Theory, vol. 25, pp. 170–178, 1979.
6. Рытов С.М. Введение в статистическую радиофизику. Ч. І. Случайные процессы. – М.: Наука, 1976. – 496 с.
7. P.A. Lewis, “A branching Poisson process model for the analysis of computer failure patterns”, Jour. Roy. Statist. Soc., vol. B26, pp. 398–456, 1964.
8. C. Klüppelberg et al., “Explosive Poisson shot noise processes with applications to risk reserves”, Bernoulli, vol. 1(1/2), pp. 125–147, 1995.
9. C. Klüppelberg et al., “Delay in claim settlement and ruin probability approximations”, Scand. Actuarial Jour., vol. 2, pp. 154–168, 1995.
10. Булдыгин В.В., Козаченко Ю.В. Метрические характеристики случайных величин и процессов. – К.: ТВіМС, 1998. – 290 с.
11. Ільєнко А.Б. Функціональна гранична теорема для процесів дробового ефекту // Теор. ймовірност. та матем. статист. – 2001. – 65. – С. 46–52.
12. Ільєнко А.Б. Про граничний розподіл інтегралів від дробових процесів // Укр. мат. журн. – 2002. – 54, № 1. – С. 53–62.
13. L. Heinrich et al., “Normal convergence of multidimensional shot noise and rates of this convergence”, Adv. Applied Probability, vol. 17, pp. 709–730, 1985.
14. Лоэв Е. Теория вероятностей. — М.: Иностр. лит-ра, 1962. – 720 с.
15. Золотарёв В.М. Оценки различия распределений в метрике Леви // Тр. Матем. ин-та им. В.А. Стеклова. – 1971. – 112. – С. 224–231.

AttachmentSize
2012-4-11.pdf145.89 KB

Тематичні розділи журналу

,