Research of Characteristics of L-Shaped and Waveguide with Two Corner Cuts by Variational Method

Waveguides with one and two cuts (L-shaped waveguide and waveguide with two corner cuts) are used in microwave devices. Therefore, there is a need for new effective and rapid methods for calculating the characteristics of such waveguides. The variational method is used to calculate the eigenvalues of waves of L-shaped waveguide and waveguide with two corner cuts with arbitrary geometrical parameters. Polynomials orthogonal over the area of considered waveguides are unknown. We consider several types of the field approximation: on the basis of trigonometric and power functions. Field approximation by trigonometric functions gives more accurate results in calculating eigenvalues and requires less mathematical operations. Increase of the system order leads to an increase of the condition number and instability of the solution. Variational method gives eigenvalues of the waves with great accuracy for large cuts and a small number of transactions. Results can be used in design and synthesis of microwave devices based on the L-shaped waveguide and waveguide with two corner cuts.

Publication year: 
С. 27—33. Іл. 7. Бібліогр.: 10 назв.

1. H.F. Lenzingand and M.J. Gans, “Machined waveguide twist”, IEEE Trans. Microw. Theory and Tech., vol. 38, no. 7, pp. 942—944, 1990.
2. X.-P. Liang et al., “Dual mode coupling by square corner cut in resonators and filters,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2294—2302, 1992.
3. А.А. Kirilenko et al., “Compact 90 Twist Formed by a Double-Corner-Cut Square Waveguide Section”, IEEE Trans. on Microwave Theory and Tech., vol. 56, no. 7, pp. 1633—1637, 2008.
4. L.A. Rud and K.S. Shpachenko, “Polarizer Based on Waveguide with Complex Cross-Section”, in Proc. 2010 Int. Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkiv, 2010, CD-ROM, E-7.
5. L.A. Rud and K.S. Shpachenko, “Eigen Modes of a Square Waveguide With Two Inner Diagonally-Placed Square Ridges”, IEEE Trans. on Math. Methods in Electromagnetic Theory, Kyiv, Sep. 2010.
6. Войтович Н.Н., Каценеленбаум Б.З., Сивов А.Н. Обобщенный метод собственных колебаний в теории дифракции: Монография. — М.: Наука, 1977. — 416 с.
7. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. — М.: Наука, 1965. — 424 с.
8. Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. 2. — М.: Изд-во иностр. лит-ры, 1960. — 942 с.
9. Волноводы сложных сечений / Г.Ф. Заргано, В.П. Ляпин, В.С. Михалевский и др. — М.: Радио и связь, 1986. — 124 с.
10. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы: Справ. пособие. — К.: Наук. Думка, 1986. — 544 с.

2012-5-4.pdf1.32 MB

Тематичні розділи журналу