Mathematical and Programming Models of Coexistence of Two “Predator–Prey” Type Populations

Автори

It is a theoretical investigation in the field of modeling of \ numbering populations. We analyze different models of populations interactions and find essential imperfections of these models. We propose the mathematical model of interaction of the simplest population structure interaction. This model takes into consideration the phenomenon of the predator satiety under conditions of sufficient prey. This phenomenon stipulates that the predator does not eat more than it needs for satiation. The classical model ignores the predator’s satiation. We check the adequacy of our model by using simulation. We construct the flexible programmed environment. This environment allows us to simulate the interactions between populations. This environment can be used for studying very complicated structures that consist of many predator types. We analyze and compare calculation results by the mathematical model and the programming model. Our mathematical model is adequate. Keywords: mathematical modeling, simulation, the predator-prey system, prediction of

Publication year: 
2013
Issue: 
3
УДК: 
519.8
С. 70–74. Бібліогр.: 5 назв.
References: 

1. Мальтус Т. Опыт закона о народонаселении. — Петрозаводск: Петроком, 1993. — 150 с.
2. Вольтерра В. Математическая теория борьбы за существование. — М.: Наука, 1976. — 150 с.
3. J.D. Murry, Mathematical biology. New York: Springer- Verlag, 2001, 551 p.
4. Делеган І.В. Біологія лісових птахів та звірів. — Львів: Поділ, 2005. — 600 с.
5. Лаврик В.І. Методи математичного моделювання в екології. — К.: Фітоцентр, 1998. — 316 с.

References [transliteration]: 

1. Mal'tus T. Opyt zakona o narodonaselenii. – Petrozavodsk: Petrokom, 1993. – 150 s.
2. Vol'terra V. Matematicheskai͡a teorii͡a bor'by za sushchestvovanie. – M.: Nauka, 1976. – 150 s.
3. J.D. Murry, Mathematical biology. New York: Springer-Verlag, 2001, 551 p.
4. Delehan I.V. Biolohii͡a lisovykh ptakhiv ta zviriv. – L′viv: Podil, 2005. – 600 s.
5. Lavryk V.I. Metody matematychnoho modeli͡uvanni͡a v ekolohiï. – K.: Fitot͡sentr, 1998. – 316 s.

AttachmentSize
2013-3-11.pdf199.69 KB

Тематичні розділи журналу

,