The Electrolyte Movement at Etching and Deposition of Metals Under Inhomogeneous Constant Magnetic Field

This paper considers the features of the electrolyte movement in the surface layer in the processes of etching and deposition of metals at a ferromagnetic electrode in the form of a ball, when it is magnetized in an external inhomogeneous magnetic field of the moderate intensity (∼ 1 kOe). The choice of an electrode in the form of a ball makes it easy to distinguish the effects of magnetic fields from the effects of a different nature due to the equivalence of all points of its surface in the absence of magnetization in this model system. We show that nonuniform concentration distribution of paramagnetic or effectively paramagnetic cluster products of electrochemical reactions appears in an electrolyte under the influence of the inhomogeneous magnetic field of the magnetized ferromagnetic ball. For example, clusters can represent the micro- or nanobubbles, stabilized by paramagnetic or diamagnetic ions in electrolytes, and colloidal particles with their ionic environment. The concentration electromotive force, current density and the functional expression of the rotational speed of the electrolyte in a plane perpendicular to the direction of the external magnetic field are calculated in the surface layer of a magnetized steel ball, as well as the equation describing the interface between the areas in electrolyte with opposite rotation directions. The results of theoretical modeling can be used to create functional materials by methods of magnetoelectrolysis for modeling the impact of biogenic magnetic nanoparticles on the transport processes and biochemical reactions in the cells of living organisms.

Publication year: 
2013
Issue: 
4
УДК: 
537.63; 537.84; 544.63
С. 106—113. Іл. 1. Бібліогр.: 25 назв.
References: 

1. Y.C. Tang and A.J. Davenport, “Magnetic field effects on the corrosion of artificial pit electrodes and pits in thin films”, J. Electrochem. Soc., vol. 154, no. 7, pp. 362— 370, 2007.
2. R. Sueptitz et al., “Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions”, Electrochimica Acta, vol. 54, no. 8, pp. 2229— 2233, 2009.
3. I. Costa et al., “The effect of the magnetic field on the corrosion behavior of Nd—Fe—B permanent magnets”, J. Magn. Magn. Mater., vol. 278, no. 3, pp. 348—358, 2004.
4. M.D. Pullins et al., “Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes”, J. Phys. Chem. B, vol. 105, no. 37, pp. 8989—8994, 2001.
5. O.Yu. Gorobets and D.O. Derecha, “Quasi-periodic microstructuring of iron cylinder surface under its corrosion in the combined electric and magnetic fields”, Mater. Sci., vol. 24, no. 4, pp. 1017—1025, 2007.
6. S.V. Gorobets et al., “Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field”, Appl. Surf. Sci., vol. 252, no. 2, pp. 448—454, 2005.
7. M.Yu. Ilchenko et al., “Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid”, J. Magn. Magn. Mater., vol. 322, pp. 2075— 2080, 2010.
8. O.Yu. Gorobets et al., “Nickel Electrodeposition under Influence of Constant Homogeneous and High-Gradient Magnetic Field”, J. Phys. Chem. C, vol. 112, no. 9, pp. 3373—3375, 2008.
9. P. Dunne and J.M.D. Coey, “Patterning metallic electrodeposits with magnet arrays”, Phys. Rev. B, vol. 85, pp. 224411 (1—20), 2012.
10. P. Dunne et al., “Magnetic Structuring of Electrodeposits”, Phys. Rev. Let., vol. 107, pp. 024501 (1—4), 2011.
11. K. Tschulik et al., “How to obtain structured metal deposits from diamagnetic ions in magnetic gradient fields?”, Electrochem. Commun., vol. 13, pp. 946—950, 2011.
12. K. Tschulika et al., “Electrodeposition of Separated Metallic Structures in Superimposed Magnetic Gradient Fields”, Electrochem. Soc., vol. 41, no. 26, pp. 9—16, 2012.
13. S.V. Gorobets et al., “Electrolyte vortex flows induced by a steady-state magnetic field in the vicinity of a steel wire used as an accelerator of the chemical reaction rate”, Magnetohydrodynamics, vol. 39, no. 2, pp. 211—214, 2003.
14. Модель возникновения вихревых потоков электролита при цементационном осаждении дендритных покритий в градиентном магнитном поле / О.Ю. Горобец, С.В. Горобец, Ю.А. Легенький, Ю.Н. Пименов // Вісник Донецького ун-ту. — 2009. — № 2. — С. 192—196.
15. V.G. Bar’yakhtar et al., “Velocity distribution in electrolyte in the vicinity of a metal cylinder in a steady magnetic field”, J. Magn. Magn. Mater., vol. 272, pp. 2410—2412, 2004.
16. O.Yu. Gorobets et al., “Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching processin a gradient magnetic field of a magnetized ferro magnetic ball”, J. Magn. Magn. Mater., vol. 330, pp. 76— 80, 2013.
17. Горобець О. Ю., Горобець Ю. І., Роспотнюк В. П., Електрорушійна сила при травленні однорідно намагніченої кулі в електроліті // Металлофизика и новейшие технологии. — 2012. — № 34. — С. 895—906.
18. J.W.G. Tyrrell and P. Attard, “Images of nanobubbles on hydrophobic surfaces and their interactions”, Phys. Rev. Let., vol. 87, pp. 176104—176108, 2001.
19. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. — М.: Физматлит, 2003. — Т. VIII: Электродинамика сплошных сред. — C. 329—337.
20. Шерклиф Дж. Курс магнитной гидродинамики. — М.: Мир, 1967. — 320 с.
21. Левич В. Г. Физико-химическая гидродинамика. — М.: Физматгиз, 1959. — C. 49—54.
22. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. — М.: Физматлит, 2006. — Т. VI: Гидродинамика. — C. 71—77.
23. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Ч. 2. — М.: Физматлит, 1963. — C. 385— 400.
24. Антропов Л.И. Теоретическая электрохимия. — М.: Высшая школа,1984. — C. 112—115.
25. Харнед Г., Оуэн Б. Физическая химия растворов электролитов. — М.: Издатинлит, 1952. — С. 168—173.

References [transliteration]: 

1. Y.C. Tang and A.J. Davenport, “Magnetic field effects on the corrosion of artificial pit electrodes and pits in thin films”, J. Electrochem. Soc., vol. 154, no. 7, pp. 362–370, 2007.
2. R. Sueptitz et al., “Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions”, Electrochimica Acta, vol. 54, no. 8, pp. 2229–2233, 2009.
3. I. Costa et al., “The effect of the magnetic field on the corrosion behavior of Nd–Fe–B permanent magnets”, J. Magn. Magn. Mater., vol. 278, no. 3, pp. 348–358, 2004.
4. M.D. Pullins et al., “Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes”, J. Phys. Chem. B, vol. 105, no. 37, pp. 8989–8994, 2001.
5. O.Yu. Gorobets and D.O. Derecha, “Quasi-periodic microstructuring of iron cylinder surface under its corrosion in the combined electric and magnetic fields”, Mater. Sci., vol. 24, no. 4, pp. 1017–1025, 2007.
6. S.V. Gorobets et al., “Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field”, Appl. Surf. Sci., vol. 252, no. 2, pp. 448–454, 2005.
7. M.Yu. Ilchenko et al., “Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid”, J. Magn. Magn. Mater., vol. 322, pp. 2075–2080, 2010.
8. O.Yu. Gorobets et al., “Nickel Electrodeposition under Influence of Constant Homogeneous and High-Gradient Magnetic Field”, J. Phys. Chem. C, vol. 112, no. 9, pp. 3373–3375, 2008.
9. P. Dunne and J.M.D. Coey, “Patterning metallic electrodeposits with magnet arrays”, Phys. Rev. B, vol. 85, pp. 224411 (1–20), 2012.
10. P. Dunne et al., “Magnetic Structuring of Electrodeposits”, Phys. Rev. Let., vol. 107, pp. 024501 (1–4), 2011.
11. K. Tschulik et al., “How to obtain structured metal deposits from diamagnetic ions in magnetic gradient fields?”, Electrochem. Commun., vol. 13, pp. 946–950, 2011.
12. K. Tschulika et al., “Electrodeposition of Separated Metallic Structures in Superimposed Magnetic Gradient Fields”, Electrochem. Soc., vol. 41, no. 26, pp. 9–16, 2012.
13. S.V. Gorobets et al., “Electrolyte vortex flows induced by a steady-state magnetic field in the vicinity of a steel wire used as an accelerator of the chemical reaction rate”, Magnetohydrodynamics, vol. 39, no. 2, pp. 211–214, 2003.
14. Model' vozniknovenii͡a vikhrevykh potokov ėlektrolita pri t͡sementat͡sionnom osazhdenii dendritnykh pokritiĭ v gradientnom magnitnom pole / O.I͡U. Gorobet͡s, S.V. Gorobet͡s, I͡U.A. Legen'kiĭ, I͡U.N. Pimenov // Visnyk Donet͡s′koho un-tu. – 2009. – # 2. – S. 192–196.
15. V.G. Bar’yakhtar et al., “Velocity distribution in electrolyte in the vicinity of a metal cylinder in a steady magnetic field”, J. Magn. Magn. Mater., vol. 272, pp. 2410–2412, 2004.
16. O.Yu. Gorobets et al., “Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball”, J. Magn. Magn. Mater., vol. 330, pp. 76–80, 2013.
17. Horobet͡s′ O. I͡u., Horobet͡s′ I͡u. I., Rospotni͡uk V. P. Elektrorushiĭna syla pry travlenni odnoridno namahnichenoï kuli v elektroliti // Metallofizika i noveĭshie tekhnologii. – 2012. – # 34. – S. 895–906.
18. J.W.G. Tyrrell and P. Attard, “Images of nanobubbles on hydrophobic surfaces and their interactions”, Phys. Rev. Let., vol. 87, pp. 176104–176108, 2001.
19. Landau, L.D., Lifshit͡s E.M. Teoreticheskai͡a fizika. – M.: Fizmatlit, 2003. – T. VIII: Ėlektrodinamika sploshnykh sred. – S. 329–337.
20. Sherklif Dzh. Kurs magnitnoĭ gidrodinamiki. – M.: Mir, 1967. – 320 s.
21. Levich V. G. Fiziko-khimicheskai͡a gidrodinamika. – M.: Fizmatgiz, 1959. – C. 49–54.
22. Landau L.D., Lifshit͡s E.M. Teoreticheskai͡a fizika. – M.: Fizmatlit, 2006. – T. VI: Gidrodinamika. – S. 71–77.
23. Kochin N.E., Kibel' I.A., Roze N.V. Teoreticheskai͡a gidromekhanika. Ch. 2. – M.: Fizmatlit, 1963. – S. 385–400.
24. Antropov L.I. Teoreticheskai͡a ėlektrokhimii͡a. – M.: Vysshai͡a shkola,1984. – S. 112–115.
25. Kharned G., Ouėn B. Fizicheskai͡a khimii͡a rastvorov ėlektrolitov. – M.: Izdatinlit, 1952. – S. 168–173.

AttachmentSize
2013-4-17.pdf316.29 KB

Тематичні розділи журналу

,