Mathematical Simulation of Methane Production in the Fermentation Process

In this paper a mathematical model for the study of the process for producing the methane fermentation when the content of acetic acid changes in the fermenter, which is formed during the methanogenesis, was proposed. At the core of the mathematical model calculation there is the ideal mixing reactor theory. As a raw material for the production of methane by microorganisms a mixture of poultry manure and waste corn was chosen. The fermentation was performed under anaerobic conditions with the temperature 37±2 °С. The methane in biogas and acetic acid concentrations were determined by chromatographic methods. It was found that by using the ratio of dry weight of chicken manure to corn 60:40 the highest biogas yield was reached and the concentration of methane was 56 %. Methane production by microorganisms have periodical dependence on the concentration of acetic acid which is generated by waste destruction. Acetic acid concentration affects the pH-value, and thereafter the methane yield. Comparison of calculation results based on the mathematical model indicates positive suitability to the experimental data within the engineering deviation.

Publication year: 
2014
Issue: 
3
УДК: 
662.659:606:628:543.2:543.5:004.942
С. 21–25., Іл. 4. Бібліогр.: 8 назв.
References: 

1. S. Luostarinen et al., “Overview of Biogas Technology”, Overview of Biogas Technology. Baltic manure WP6 Energy potentials, 2011, p. 47.
2. Гелетуха Г.Г., Кучерук П.П., Матвеєєв Ю.Б. Перспективи виробництва та використання біогазу в Україні. Аналітична записка БАУ № 4, 2013. — 22 с. — [Електронний ресурс]. — http://www.uabio.org/img/files/docs/ position-paper-uabio-4-ua.pdf
3. S. Pender, et al., “Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors”, Water Res., vol. 38, no. 3, pp. 619—630, 2004.
4. Биология метанобразующих и метанокисляющих микроорганизмов / Ю.Р. Малашенко, Ю. Хайер, У. Бергер та ін. — К.: Наук. думка, 1993. — 255 с.
5. M. Gerber, R. Span, “An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas”, Chair of Thermodynamics Germany, 2008, р. 30.
6. Иономер лабораторный И-160 МИ. Руководство по эксплуатации. — ООО “Измерительная техника”, 2007. — 70 с.
7. Shimadzu High-Performance Liquid Chromatograph. Shimadzu corporation, 2010, 45 p.
8. Лейбниц Э., Штруппе Х.Г. Руководство по газовой хроматографии. Ч. 1. — М.: Мир, 1988. — 480 с.

References [transliteration]: 

1. S. Luostarinen et al., “Overview of Biogas Technology”, Overview of Biogas Technology. Baltic manure WP6 Energy potentials, 2011, p. 47.
2. Heletukha H.H., Kucheruk P.P., Matvei͡ei͡ev I͡u.B. Perspektyvy vyrobnyt͡stva ta vykorystanni͡a biohazu v Ukraïni. Analitychna zapyska BAU # 4, 2013. – 22 s. – [Elektronnyĭ resurs]. – http://www.uabio.org/img/files/docs/ position-paper-uabio-4-ua.pdf
3. S. Pender, et al., “Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors”, Water Res., vol. 38, no. 3, pp. 619–630, 2004.
4. Biologii͡a metanobrazui͡ushchikh i metanokisli͡ai͡ushchikh mikro¬orga¬nizmov / I͡U.R. Malashenko, I͡U. Khaĭer, U. Berger ta іn. – K.: Nauk. dumka, 1993. – 255 s.
5. M. Gerber, R. Span, “An analysis of available mathe¬matical models for anaerobic digestion of organic sub¬stances for production of biogas”, Chair of Thermody¬namics Germany, 2008, р. 30.
6. Ionomer laboratornyĭ I-160 MI. Rukovodstvo po ėkspluatat͡sii. – OOO “Izmeritel'nai͡a tekhnika”, 2007. – 70 s.
7. Shimadzu High-Performance Liquid Chromatograph. Shi¬ma¬dzu corporation, 2010, 45 p.
8. Leĭbnit͡s Ė., Shtruppe Kh.G. Rukovodstvo po gazovoĭ khromatografii. Ch. 1. – M.: Mir, 1988. – 480 s.

AttachmentSize
2014-3-3.pdf320.59 KB

Тематичні розділи журналу

,