Asymptotic Unbiasedness and Consistency of Cross-Correlogram Estimators of Response Functions in Linear Continuous Systems

Автори

The estimation problem of an unknown real-valued response function of a linear continuous system is considered. We suppose that a family of zero-mean stationary Gaussian processes, which are close, in some sense, to a white noise, disturbs the system. Integral-type sample input-output cross-correlograms are taken as estimators of the response function from . The corresponding cross-correlogram estimator depends on two parameters (a parameter of a scheme of series and a length of an averaging interval) and is biased. Our aim is to investigate the properties of asymptotic unbiasedness and consistency of the estimator. The main results are obtained due to additional assumptions about the uniform Lipschitz condition for the response function, and balance conditions between the correlation functions of inputs and the parameter of the scheme of series. Properties of the Fourier transform, some properties of Fejers kernels and the Young inequality for convolutions are used to prove these facts. Both asymptotic unbiasedness and consistency in mean square sense are studied in the paper.

Publication year: 
2014
Issue: 
4
УДК: 
519.21
С. 7–12., Бібліогр.: 11 назв.
References: 

1. Бендат Дж., Пирсол А. Применения корреляционного и спектрального анализа. — М.: Мир, 1983. — 312 с.
2. V.V. Buldygin and Fu Li, “On asymptotical normality of an estimation of unit impulse responses of linear systems” (I, II), Theor. Probab. and Math. Statist., vol. 54, pp. 17— 24, 1997; vol. 55, pp. 29—36, 1997.
3. Булдыгин В.В., Козаченко Ю.В., Метрические характеристики случайных величин и процессов. — К.: ТВіМС, 1998. — 290 с.
4. V.V. Buldygin and V.G. Kurotschka, “On cross-correlogram estimators of the response function in continuous linear systems from discrete observations”, Random Oper. and Stoch. Eq., vol. 7, no. 1, pp. 71—90, 1999.
5. V. Buldygin et al., “Asymptotic normality of cross-correlogram estimates of the response function”, Statistical Interference for Stochastic Proc., vol. 7, pp. 1—34, 2004.
6. Булдигін В.В., Блажієвська І.П. Про кореляційні властивості корелограмних оцінок імпульсних перехідних функцій // Наукові вісті НТУУ “КПІ”. — 2009. — № 5. — С. 120—128.
7. Булдигін В.В., Блажієвська І.П. Асимптотичні властивості корелограмних оцінок імпульсних перехідних функцій лінійних систем // Наукові вісті НТУУ “КПІ”. — 2010. — № 4. — С. 16—27.
8. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980, 618 р.
9. I.P. Blazhievska, “Correlogram estimation of response functions of linear systems in scheme of some independent samples”, Theory of Stochastic Proc., vol. 17 (33), no. 1, pр. 16—27, 2011.
10. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — М.: Наука, 1976. — 544 с.
11. R.E. Edwards, Functional analysis: theory and applications. New York: Holt, Rinehart and Winston, 1965, 798 р.

References [transliteration]: 

1. Bendat Dzh., Pirsol A. Primenenii͡a korreli͡at͡sionnogo i spektral'nogo analiza. – M.: Mir, 1983. – 312 s.
2. V. V. Buldygin and Fu Li, “On asymptotical normality of an estimation of unit impulse responses of linear systems” (I, II), Theor. Probab. and Math. Statist., vol. 54, pp. 17–24, 1997; vol. 55, pp. 29–36, 1997.
3. Buldygin V.V., Kozachenko I͡U.V., Metricheskie kharakteristiki sluchaĭnykh velichin i prot͡sessov. – K.: TVіMS, 1998. – 290 s.
4. V.V. Buldygin and V.G. Kurotschka, “On cross-correlogram estimators of the response function in continuous linear systems from discrete observations”, Random Oper. and Stoch. Eq., vol. 7, no. 1, pp. 71–90, 1999.
5. V. Buldygin et al., “Asymptotic normality of cross-correlongram estimates of the response function”, Statistical Interference for Stochastic Proc., vol. 7, pp. 1–34, 2004.
6. Buldyhin V.V., Blaz͡hii͡evs′ka I.P. Pro koreli͡at͡siĭni vlastyvosti korelohramnykh ot͡sinok impul′snykh perekhidnykh funkt͡siĭ // Naukovi visti NTUU “KPI”. – 2009. – # 5. – S. 120–128.
7. Buldyhin V.V., Blaz͡hii͡evs′ka I.P. Asymptotychni vlastyvosti korelohramnykh ot͡sinok impul′snykh perekhidnykh funkt͡siĭ liniĭnykh system // Naukovi visti NTUU “KPI”. – 2010. – # 4. – S. 16–27.
8. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980, 618 р.
9. I.P. Blazhievska, “Correlogram estimation of response functions of linear systems in scheme of some independent samples”, Theory of Stochastic Proc., vol. 17 (33), no. 1, pр. 16–27, 2011.
10. Kolmogorov A.N., Fomin S.V. Ėlementy teorii funkt͡siĭ i funkt͡sional'nogo analiza. – M.: Nauka, 1976. – 544 s.
11. R.E. Edwards, Functional analysis: theory and applications. New York: Holt, Rinehart and Winston, 1965, 798 р.

AttachmentSize
2014-4-1.pdf239.03 KB