An epr study of silicon carbide irradiated with high dose neutrons

The present paper demonstrates the results of an EPR study of n-type hexagonal 6H- and cubic 3CSiC crystals irradiated with fast neutrons in a dose range of 2⋅1018–5⋅1019 cm−2. We reveal that the negatively charged silicon monovacancy V-Si is a dominant paramagnetic defect. We also observe some changes of intensity and line shape for its EPR spectrum in the dose range and uncover that the introduction rate of this defect is about 1,3 cm−1. Crucially, we identify a novel EPR spectrum of a defect labeled Ky5 in the cubic SiC crystals irradiated with 1⋅1019 cm−2 neutrons, except for the intense signal from V-Si . The spin-Hamiltonian parameters identity for Ky5 and divacancies in the 6H-SiC and 4H-SiC crystals makes it possible to attribute the Ky5 center to the divacancy [VSiVC]0 in the cubic SiC.

Publication year: 
2009
Issue: 
4
УДК: 
543.429.22; 544.022.342
С. 125–130, укр., Іл. 3. Бібліогр.: 17 назв.
References: 

1. Silicon carbide — a high temperature semiconductor / J.R. O’Connor, J. Smiltens (Eds). — London: Pergamon Press, 1960. — 462 p.
2. Choyke W.J., Matsunami H., Pensl G. Silicon carbide: recent major advances. — Berlin: Springer, 2003. — 900 p.
3. Мохов Е.Н., Водаков Ю.А., Ломакина Г.А. и др. Диффузия бора в карбиде кремния // ФТП. — 1972. — 6, № 3. — С. 482—486.
4. Isoya J., Umeda T., Mizuochi N. еt al. EPR identification of intrinsic defects in SiC // Physica Status Solidi B. — 2008. — 245, N 7. — P. 1298—1314.
5. Bratus V.Ya., Petrenko T.T., Okulov S.M., Petrenko T.L. Positively charged carbon vacancy in three inequivalent lattice sites of 6H-SiC: combined EPR and density functional theory study // Physical Review B. — 2005. — 71, N 12. — Р. 125202.
6. Павлов Н.М., Иглицын М.И., Косаганова М.Г., Соломатин В.Н. Центры со спином 1 в карбиде кремния, облученном нейтронами и α-частицами // Физика и техника полупроводников. — 1975. — 9, № 7. — С. 1279—1285.
7. Nagesh V., Farmer J.W., Davis R.F., Kong H.S. Defects in neutron irradiated SiC // Applied Physics Letters. — 1987. — 50, N 17. — P. 1138—1140.
8. Orlinski S.B., Schmidt J., Mokhov E.N., Baranov P.G. Silicon and carbon vacancies in neutron-irradiated SiC: A high-field electron paramagnetic resonance study // Physical Review B. — 2003. — 67, N 12. — Р. 125207.
9. Maekawa F., Ochiai K., Shibata K. et al. Benchmark experiment on silicon carbide with D—T neutrons and validation of nuclear data libraries // Fusion Engineering and Design. — 2001. — 58-59. — P. 595—600.
10. Mizuochi N., Yamasaki S., Takizava H. et al. EPR studies of the isolated negatively charged silicon vacancies in n-type 4H- and 6H-SiC: Identification of C3v symmetry and silicon sites // Physical Review B. — 2003. — 68, N 16. — Р. 165206.
11. Von Bardeleben J.H., Cantin J.L., Vickridge I., Battistig G. Proton-implantation-induced defects in n-type 6H- and 4H-SiC: An electron paramagnetic resonance study // Ibid. — 2000. — 62, N 15. — P. 10126—10134.
12. Wimbauer T., Meyer B.K., Hofstaetter A. et al. Negatively charged Si vacancy in 4H-SiC: A comparison between theory and experiment // Ibid. — 1997. — 56, N 12. — P. 7384—7388.
13. Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Т. 1. — М.: Мир, 1972. — 652 с.
14. Bratus V.Ya., Petrenko T.T., von Bardeleben J.H. et al. Vacancy-related defects in ion-beam and electron irradiated 6H-SiC // Applied Surface Science. — 2001. — 184, N 1. — Р. 229—236.
15. Вайнер В.С., Ильин В.А. ЭПР обменносвязанных пар вакансий в гексагональном карбиде кремния // Физика твердого тела. — 1981. — 23, № 12. — С. 3659— 3671.
16. Mizuochi N., Yamasaki S., Takizava H. et al. Spin multiplicity and charge state of a silicon vacancy in 4H-SiC determined by pulsed ENDOR // Physical Review B. — 2005. — 72, N 23. — Р. 235208.
17. Itoh H., Kawasuso A., Ohshima T. et al. Intrinsic defects in cubic silicon carbide // Physica Status Solidi A. — 1997. — 162, N 1. — P. 173—198.

AttachmentSize
2009-4-16.pdf314.64 KB

Тематичні розділи журналу

,