Біомінералізація внутрішньоклітинних біогенних магнітних наночастинок і їх можливі функції

Метою роботи є аналіз схожості всіх білків магнітосомного острівця магнітотакисисних бактерій з геномами організмів трьох основних царств: бактерій, архей і еукаріот, для виявлення можливої загальної генетичної основи механізму біомінералізації внутріклітинних біогенних магнітних наночастинок (ВБМН). Також метою роботи є оцінювання енергії як парамагнітних, так і ефективно парамагнітних внутрішньоклітинних кластерних компонент у магнітному полі ВБМН порівняно з енергією їх теплового руху для встановлення фізичного механізму можливого впливу неоднорідних магнітних полів ВБМН на мотаболізм у клітині. З використанням методів біоінформаційного аналізу показано, що існує загальна генетична основа біомінералізації ВБМН у різних організмах, геноми яких відомі. Також показано, що енергія як парамагнітних, так і ефективно парамагнітних внутрішньоклітинних кластерних компо-нентів у магнітному полі ВБМН може значно перевищувати енергію їх теплового руху. Це дає можливість здійснювати їх спрямова-ний транспорт під впливом неоднорідних магнітних полів ВБМН всередині клітини. Тому ВБМН можуть являти собою внутрішньоклітинну магнітну наномашину для керування транспортними процесами в клітині, зокрема виробництвом активних форм кисню, що своєю чергою може впливати на функціонування імунної системи, передачу клітинних сигналів, запуск різних сигнальних систем, біосинтез ряду білків, нюхову і дотикову рецепцію, регуляцію тиску тощо.

Рік видання: 
2013
Номер: 
3
УДК: 
57.05
С. 28–33. Бібліогр.: 41 назва.
Література: 

1. R.P. Blakemore, “Magnetotactic bacteria”, Sci., vol.190, pp. 377—379, 1975.
2. D.A. Kuterbach and B. Walcott, “Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology”, J. Exp. Biol., vol. 126, pp. 375—87, 1986, pp. 389—401.
3. A. Bharde et al., “Sastry Extracellular Biosynthesis of Magnetite using Fungi”, Small., vol. 2, pp. 135—141, 2006.
4. S. Mann et al., “Morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception”, J. Exp. Biol., vol. 140, pp. 35—49, 1988.
5. C. Walcott et al., “Pigeons have magnets”, Sci., vol. 184, pp. 180—182, 1979.
6. J. Zoeger et al., “Magnetic material in the head of the common Pacific dolphin”, Ibid, vol. 213, pp. 892—894, 1981.
7. J.L. Kirschvink et al., Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism, New York: Plenum Press, 1985, 682 p.
8. P.P. Schultheiss-Grassi and J. Dobson, “Magnetic analysis of human brain tissue”, BioMetals, vol. 12, pp. 67—72, 1999.
9. P.P. Schultheiss-Grassi et al., “Analysis of magnetic material in the human heart, spleen and liver”, Ibid, vol. 10, pp. 351—355, 1997.
10. F. Brem et al., “Magnetic iron compounds in the human brain: a comparison of tumor and hippocampal tissue”, J. R. Soc. Interface, vol. 3, pp. 833—841, 2006.
11. S. Ullrich et al., “Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth”, J. Bacteriol, vol. 187, pp. 7176—7184, 2005.
12. A. Fernanda et al., “Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria”, The ISME J., vol. 5, pp. 1634—1640, 2011.
13. S.V. Gorobets and O.Yu. Gorobets,“Functions of biogenic magnetic nanoparticles in organisms”, Functional Mater., vol. 19, pp. 18—26, 2012.
14. Yu.I. Gorobets and S.V. Gorobets,“Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field”, Bull. of Herson State Tech. Un., vol. 3, no. 9, pp. 276—281, 2000.
15. S. Ullrich et al., “Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization”, PLoS One, vol. 6, no. 10, 2011.
16. S. Schübbe et al., “Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense”, Appl. Environ. Microbiol.,vol. 72, no. 9, pp. 5757—5765, 2006.
17. H. Nakazawa et al., “Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria”, Genome Res., vol. 19, pp. 1801—1808, 2009.
18. A.P. Taylor and J.C. Barry, “Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes”, J. Microsc., vol. 213, pp. 180—197, 2004.
19. J.L. Kirschvink et al.,“Magnetite-based magnetoreception”, Sensory systems, vol. 11, pp. 462—468, 2001.
20. K.W. Mandernack et al.,“Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria”, Sci., vol. 285, pp. 1892—1896, 1999.
21. Biello D.,“The Origin of Oxygen in Earth’s Atmosphere: The breathable air we enjoy today originated from tiny organisms, although the details remain lost in geologic time”, Sci. American, August 2009.
22. L.M. Tiede et al., “Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins”, Cell. Death Dis., vol. 2, p. 246, 2011.
23. E. Ortiz-Prado et al., “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO2”, J. Neurosci Methods, vol. 193, no. 2, p. 217,
24. S. Osinsky and P.Vaupel, “Tumor Microphysiology. Metabolic Microenvironment of Tumor Cells: Characteristics, Impact on Tumor Progression, Clinical Implications”, in Sci. Book Project, Ukraine, Kiev: Naukova Dumka, 2009.
25. F.F. Guo et al. (2012). Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1 [Online]. Available: http://onlinelibrary. wiley.com.sci-hub.org doi/10.1111/j.14622920.2012.02707.x/full
26. P. Ma et al. (2012). Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice [Online]. Available: http:// www. ncbi.nlm.nih.gov.scihub.org/pmc/-articles/ PMC3439859
27. P. Houdy et al., Nanoethics and nanotoxicology, Germany, Berlin: Springer Verlag, p. 620, 2011.
28. M. Winklhofer and N. Petersen, Paleomagnetism and Magnetic Bacteria, Germany, Berlin: Springer-Verlag, 2006, pp. 256—273.
29. O.Yu. Gorobets et al., “Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball”, J. MMM, vol. 330, pp. 76—80, 2013.
30. Yu.I. Gorobet and S.V. Gorobets, “Formation of stationary flows of liquid in visinity of ferromagnetic packing in constant magnetic field”, J. MHD, vol. 36, pp. 75—78, 2000.
31. K. Zhu et al., “Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea”, Res. Microbiol., vol. 161, pp. 276—283, 2010.
32. F.J. Friedlaender et al., “Particle Motion Near and Capture on Single Spheres in HGMS”, IEEE Trans. Magn., vol. 17, no. 6, pp. 2801—2803, 1981.
33. Павлович Н.В. Магнитная восприимчивость организмов. — М.: Наука и техника, 1985. — 111 c.
34. D.A. Bazylinski, “Synthesis of the bacterial magnetosome: the making of a magnetic personality”, Int. Microbiol., vol. 2, pp. 71—80, 1999.
35. D.A. Bazilynski et al., “Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium”, J. AEM, vol. 61, no. 9, pp. 3232— 3239, 1995.
36. M. Kajimura et al., “Interactions of Multiple Gas-Transducing Systems: Hallmarks and Uncertainties of CO, NO, and H2S Gas Biology”, J. ARS, vol. 13, no. 2, pp. 157—192, 2010.
37. I. Bertini et al., “NMR Spectroscopy of Paramagnetic Metalloproteins”, J. Chem. Bio. Chem., vol. 6, pp. 1536— 1549, 2005.
38. S. Klein et al., “Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation”, J. BBRC., vol. 425, no. 2, pp. 393—397, 2012.
39. Ганшин В.М., Лабас Ю.А., Зинкевич Э.П. Возможная роль активных форм кислорода в первичных механизмах обонятельной рецепции // Сенсорные системы. — 2010. — 24. — С. 74—93.
40. X. Wang and L .Liang, “Effects of Static Magnetic Field on Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1”, J. BEMS, vol. 30, pp. 313—321, 2009.
41. Y. Cui et al. (2012). Deficits in Water Maze Performance and Oxidative Stress in the Hippocampus and Striatum Induced by Extremely Low Frequency Magnetic Field Exposure [Online]. Available: http://www.plosone.org/article/- info%3Adoi%2F10.1371%2Fjournal.pone.0032196

Список літератури у транслітерації: 

1. R.P. Blakemore, “Magnetotactic bacteria”, Sci., vol.190, pp. 377–379, 1975.
2. D.A. Kuterbach and B. Walcott, “Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology”, J. Exp. Biol., vol. 126, pp. 375–87, 1986, pp. 389–401.
3. A. Bharde et al., “Sastry Extracellular Biosynthesis of Magnetite using Fungi”, Small., vol. 2, pp. 135–141, 2006.
4. S. Mann et al., “Morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception”, J. Exp. Biol., vol. 140, pp. 35–49, 1988.
5. C. Walcott et al., “Pigeons have magnets”, Sci., vol.184, pp. 180–182, 1979.
6. J. Zoeger et al., “Magnetic material in the head of the common Pacific dolphin”, Ibid, vol. 213, pp. 892–894, 1981.
7. J.L. Kirschvink et al., Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism, New York: Plenum Press, 1985, 682 p.
8. P.P. Schultheiss-Grassi and J. Dobson, “Magnetic analysis of human brain tissue”, BioMetals, vol. 12, pp. 67–72, 1999.
9. P.P. Schultheiss-Grassi et al., “Analysis of magnetic material in the human heart, spleen and liver”, Ibid, vol. 10, pp. 351–355, 1997.
10. F. Brem et al., “Magnetic iron compounds in the human brain: a comparison of tumor and hippocampal tissue”, J. R. Soc. Interface, vol. 3, pp. 833–841, 2006.
11. S. Ullrich et al., “Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth”, J. Bacteriol, vol. 187, pp. 7176–7184, 2005.
12. A. Fernanda et al., “Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria”, The ISME J., vol. 5, pp. 1634–1640, 2011.
13. S.V. Gorobets and O.Yu. Gorobets,“Functions of biogenic magnetic nanoparticles in organisms”, Functional Mater., vol. 19, pp. 18–26, 2012.
14. Yu.I. Gorobets and S.V. Gorobets,“Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field”, Bull. of Herson State Tech. Un., vol. 3, no. 9, pp. 276–281, 2000.
15. S. Ullrich et al., “Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization”, PLoS One, vol. 6, no. 10, 2011.
16. S. Schübbe et al., “Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense”, Appl. Environ. Microbiol.,vol. 72, no. 9, pp. 5757–5765, 2006.
17. H. Nakazawa et al., “Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria”, Genome Res., vol. 19, pp. 1801–1808, 2009.
18. A.P. Taylor and J.C. Barry, “Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes”, J. Microsc., vol. 213, pp. 180–197, 2004.
19. J.L. Kirschvink et al.,“Magnetite-based magnetoreception”, Sensory systems, vol. 11, pp. 462–468, 2001.
20. K.W. Mandernack et al.,“Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria”, Sci., vol. 285, pp. 1892–1896, 1999.
21. Biello D.,“The Origin of Oxygen in Earth’s Atmosphere: The breathable air we enjoy today originated from tiny organisms, although the details remain lost in geologic time”, Sci. American, August 2009.
22. L.M. Tiede et al., “Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins”, Cell. Death Dis., vol. 2, p. 246, 2011.
23. E. Ortiz-Prado et al., “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO2”, J. Neurosci Methods, vol. 193, no. 2, p. 217, 2010.
24. S. Osinsky and P.Vaupel, “Tumor Microphysiology. Metabolic Microenvironment of Tumor Cells: Characteristics, Impact on Tumor Progression, Clinical Implications”, in Sci. Book Project, Ukraine, Kiev: Naukova Dumka, 2009.
25. F.F. Guo et al. (2012). Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1 [Online]. Available: http:/ onlinelibrary.wiley.com.sci-hub.org/doi/10.1111 j.14622920.2012.02707.x/full
26. P. Ma et al. (2012). Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice [Online]. Available: http: www.ncbi.nlm.nih.gov.scihub.org/pmc/-articles/PMC3439859
27. P. Houdy et al., Nanoethics and nanotoxicology, Germany, Berlin: Springer Verlag, p. 620, 2011.
28. M. Winklhofer and N. Petersen, Paleomagnetism and Magnetic Bacteria, Germany, Berlin: Springer-Verlag, 2006, pp. 256–273.
29. O.Yu. Gorobets et al., “Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball”, J. MMM, vol. 330, pp. 76–80, 2013.
30. Yu.I. Gorobet and S.V. Gorobets, “Formation of stationary flows of liquid in visinity of ferromagnetic packing in constant magnetic field”, J. MHD, vol. 36, pp. 75–78, 2000.
31. K. Zhu et al., “Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea”, Res. Microbiol., vol. 161, pp. 276–283, 2010.
32. F.J. Friedlaender et al., “Particle Motion Near and Capture on Single Spheres in HGMS”, IEEE Trans. Magn., vol. 17, no. 6, pp. 2801–2803, 1981.
33. Pavlovich N.V. Magnitnai͡a vospriimchivost' organizmov. – M.: Nauka i tekhnika, 1985. – 111 s.
34. D.A. Bazylinski, “Synthesis of the bacterial magnetosome: the making of a magnetic personality”, Int. Microbiol., vol. 2, pp. 71–80, 1999.
35. D.A. Bazilynski et al., “Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium”, J. AEM, vol. 61, no. 9, pp. 3232–3239, 1995.
36. M. Kajimura et al., “Interactions of Multiple Gas-Transducing Systems: Hallmarks and Uncertainties of CO, NO, and H2S Gas Biology”, J. ARS, vol. 13, no. 2, pp. 157–192, 2010.
37. I. Bertini et al., “NMR Spectroscopy of Paramagnetic Metalloproteins”, J. Chem. Bio. Chem., vol. 6, pp. 1536–1549, 2005.
38. S. Klein et al., “Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation”, J. BBRC., vol. 425, no. 2, pp. 393–397, 2012.
39. Ganshin V.M., Labas I͡U.A., Zinkevich Ė.P. Vozmozhnai͡a rol' aktivnykh form kisloroda v pervichnykh mekhanizmakh oboni͡atel'noĭ ret͡sept͡sii // Sensornye sistemy. – 2010. – 24. – S. 74–93.
40. X. Wang and L .Liang, “Effects of Static Magnetic Field on Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1”, J. BEMS, vol. 30, pp. 313 321, 2009.
41. Y.Cui et al. (2012). Deficits in Water Maze Performance and Oxidative Stress in the Hippocampus and Striatum Induced by Extremely Low Frequency Magnetic Field Exposure [Online]. Available: http://www.plosone.org/article/-info%3Ado %2F10.1371%2Fjournal.pone.0032196

Текст статтіРозмір
2013-3-5.pdf203.03 КБ

Тематичні розділи журналу

,