Феритин і біомінералізація біогенних магнітних наночастинок у мікроорганізмах

Виходячи з того, що генетична основа механізму біомінералізації біогенних магнітних наночастинок є спільною для прокаріот й екаріот, у роботі перевірено гіпотезу про обов’язкову участь молекули феритину в процесі біомінералізації біогенних магнітних на ночастинок. Для цього методами порівняльної геноміки досліджено,чи всі магнітотаксисні бактерії мають у своєму геномі гени феритину. Проведено вирівнювання відомих трансльованих білків бактеріального феритину та феритинподібних білків з повними геномами МТБ, використовуючи програму blastn “BLAST on-line” за стандартних параметрів. В результаті встановлено, що механізм біомінералізації біогенних магнітних наночастинок, як у прокаріотах, так і в еукаріотах, не пов’язаний із наявністю феритину та феритинподібних білків. Також методами скануючої зондової мікроскопії проілюстровано неможливість коагуляції феритину в ультурі Escherichia coli під дією зовнішніх магнітних полів напруженостей, достатніх для коагуляції біогенних та екзогенних феритових наночастинок у клітинах. Оскільки білок феритину включає кристал феригідртиту, який є антиферомагнетиком, магнітні поля помірної напруженості, які змінюють наноструктурну локалізацію феритових біогенних та екзогенних наночастинок, не можуть призвести до утворення агломератів молекул феритину.

Рік видання: 
2013
Номер: 
3
УДК: 
57.05
С. 34–41. Іл. 3. Табл. 2. Бібліогр.: 43 назви.
Література: 

1. R.B. Frankel et al., “Magnetite in freshwater magnetotactic bacteria”, Sci., vol. 203, pp. 1355—1356, 1979.
2. M. Winklhofer, “Biogenic magnetite and magnetic sensitivity in organisms — from magnetic bacteria to pigeons”, J. MHD, vol. 41, pp. 295—304, 2005.
3. T. Matsunaga et al., “Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology”, Trends Biotechnol., vol. 25, pp. 182—188, 2007.
4. K. Grünberg et al., “Biochemical and Proteomic Analysis of the Magnetosome Membrane in Magnetospirillum gryphiswaldense”, Appl. Env. Mic., vol. 70, pp. 1040—1050, 2004.
5. M. Richter et al., “Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group- Specific Genes Implicated in Magnetosome Biomineralization and Function”, J. Bacteriol., vol. 189, pp. 4899— 4910, 2007.
6. A. Arakaki, “Formation of magnetite by bacteria and its application”, J. R. Soc. Interface, vol. 5, pp. 977—999, 2008.
7. C.-Y. Hsu et al., “Magnetoreception System in Honeybees (Apis mellifera)”, PLoS ONE, vol. 4, p. 395, 2007.
8. B.A. Maher, “Magnetite biomineralization in termites”, Proc. R. Soc. Lond, vol. 265, pp. 733—737,1998.
9. C.-Y. Hsu and Y.-P. Chan,“Identification and Localization of Proteins Associated with Biomineralization in the Iron Deposition Vesicles of Honeybees”, PLoS ONE, vol. 6, p. 19088, 2011.
10. C.G. Cranfield et al., “Biogenic magnetite in the nematode Caenorhabditis elegans”, Proc. R. Soc. Lond. B (Suppl.), vol. 271, pp. 436—439, 2004.
11. S. Mann et al., “Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception”, J. Exp. Biol., vol. 140, pp. 35—49, 1988.
12. H.A. Lowenstam, “Magnetite in denticle capping in recent chitons”, Geol. Soc. 11 Am. Bull., vol. 73, no. 4, pp. 435—438, 1973.
13. C.Walcot et al., “Pigeons have magnets”, Sci., vol. 184, pp. 180—182, 1979.
14. A. Kobayashi et al., “Studies of Inorganic Crystals in Biological Tissue: Magnetite in Human Tumor”, J. Jpn Soc. Powder Powder Metall., vol. 44, p. 294, 1997.
15. F. Brem et al., “Magnetic iron compounds in the human brain: a comparison of tumor and hippocampus tissue”, J. R. Soc. Interface., vol. 3, pp. 833—841, 2006.
16. T. Moos and E.H. Morgan, “The metabolism of neuronal iron and its pathogenic role in neurological disease: review”, Ann. NY Acad. Sci., pp. 1012—1014, 2004.
17. G. Bartzokis and T.A. Tishler, “MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntington’s disease”, Cell. Molec. Biol., vol. 46, pp. 821—834, 2000.
18. M.A. Lovell et al., “Copper, iron and zinc in Alzheimer’s disease senile plaques”, J. Neurol. Sci., vol. 158, pp. 47— 52, 1998.
19. J.R. Burdo and J.R. Connor, “Brain iron uptake and homeostatic mechanisms: an overview”, Biometals, vol. 16, pp. 63—75, 2003.
20. P.P. Grassi-Schultheiss et al., “Analysis of magnetic material in the human heart, spleen and liver”, Ibid, vol. 10, pp. 351—355, 1997.
21. J.L. Kirschvink, “Ferromagnetic crystals (magnetite?) in human tissue”, J. Exp. Biol., vol. 92, pp. 333—335, 1981.
22. W. Beyhum, “Magnetic biomineralisation in Huntington's disease transgenic mice”, J. Physics: Conf. Ser., vol. 17, pp. 50—53, 2005.
23. J. Collingwood and J. Dobson, “Mapping and characterization of iron compounds in Alzheimer’s tissue”, J. Alzheimer’s Disease, vol. 10, pp. 215—222, 2006.
24. J.L. Kirschvink et al., “Ferromagnetism in two mouse tumors”, J. Exp. Biol., vol. 101, pp. 321—326, 1982.
25. Магнитная восприимчивость органи змов [Электронный ресурс]. — URL: http://okio.ru. — Название с экрана.
26. L.E. Bevers and E.C. Theil, “Maxi- and Mini-Ferritins: Minerals and Protein Nanocages”, Prog. Mol. Subcell. Biol., vol. 52, pp. 29—47, 2011.
27. Takehiko Tosha and Ho-Leung Ng,“Moving Metal Ions through Ferritin—Protein Nanocages from Three-Fold Pores to Catalytic Sites”, J. Am. Chem. Soc., vol. 5, pp. 23—30, 2010.
28. S.V. Gorobets and O.Yu. Gorobets, “Functions of biogenic magnetic nanoparticles in organisms”, J. Func. Mater., vol. 19, no. 1, pp. 18—26, 2012.
29. National Center for Biotechnology Information [Online]. Avaliable: http://blast.ncbi.nlm.nih.gov/Blast.cgi
30. T. Matsunaga et al., “Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1”, DNA Res., vol. 12, pp. 157—166, 2005.
31. H. Nakazawa et al., “Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria”, Genome Res., vol. 19, pp. 180—1808, 2009.
32. B.A. Methe et al., “Genome of Geobacter sulfurreducens: metal reduction in subsurface environments”, Sci., vol. 302 (5652), pp. 1967—1969, 2003.
33. M. Aklujkar et al., “The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens”, BMC Microbiol., vol. 9, p. 109, 2009.
34. S. Schubbe et al., “Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1”, Appl. Environ. Microbiol., vol. 75, no. 14, pp. 4835—4852, 2009.
35. X. Wang et al., “Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1 Exposed to Pulsed Magnetic Field”, Cur. Microbiol., vol. 59, pp. 221—226, 2009.
36. W. Pan et al., “Effects of pulsed magnetic field on the formation of magnetosomes in the Magnetospirillum sp. strain AMB-1”, BEMS, vol. 3, pp. 246—251, 2010.
37. X. Wang and L. Liang, “Effects of static magnetic field on magnetosome formation and expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1”, Ibid, vol. 4, pp. 313—321, 2009.
38. NT-MTD Tips [Onlibe]. Avaliable: http://www.ntmdttips. com/products/view/nsg01
39. Горобець С.В., Горобець О.Ю., Дем’яненко І.В. Самоорганізація наночастинок магнетиту при наданні магнітних властивостей дріжджам Saccharomyces cerevisiae // Наукові вісті НТУУ “КПІ”. — 2011. — № 3. — С. 27—33.
40. S.V. Gorobets et al., “Self-organizaton of magnetite nanoparticles in providing aсcharоmyces cerevisiae yeasts with magnetic properties”, JMMM, vol. 337-338, pp. 53—57, 2013.
41. S.V. Gorobets and I.A. Melnichuk, “Odering of two-dimentional system of ferromagnetic particles in magnetic field”, Ibid, vol.182, pp. 61—64, 1998.
42. Магніточутливі наноструктури ендогенного походження в клітинах карциноми Ерліха / В.Ф. Чехун, С.В. Горобець, О.Ю. Горобець, І.В. Дем’яненко // Наноструктурное материаловедение. — 2011. — 2. — С. 102—109.
43. N.E. le Brun et al., “Identification of the ferroxidase centre of Escherichia coli bacterioferritin”, J. Biochem., vol. 312, pp. 385—392, 1995.

Список літератури у транслітерації: 

1. R.P. Blakemore, “Magnetotactic bacteria”, Sci., vol.190, pp. 377–379, 1975.
2. D.A. Kuterbach and B. Walcott, “Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology”, J. Exp. Biol., vol. 126, pp. 375–87, 1986, pp. 389–401.
3. A. Bharde et al., “Sastry Extracellular Biosynthesis of Magnetite using Fungi”, Small., vol. 2, pp. 135–141, 2006.
4. S. Mann et al., “Morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception”, J. Exp. Biol., vol. 140, pp. 35–49, 1988.
5. C. Walcott et al., “Pigeons have magnets”, Sci., vol.184, pp. 180–182, 1979.
6. J. Zoeger et al., “Magnetic material in the head of the common Pacific dolphin”, Ibid, vol. 213, pp. 892–894, 1981.
7. J.L. Kirschvink et al., Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism, New York: Plenum Press, 1985, 682 p.
8. P.P. Schultheiss-Grassi and J. Dobson, “Magnetic analysis of human brain tissue”, BioMetals, vol. 12, pp. 67–72, 1999.
9. P.P. Schultheiss-Grassi et al., “Analysis of magnetic material in the human heart, spleen and liver”, Ibid, vol. 10, pp. 351–355, 1997.
10. F. Brem et al., “Magnetic iron compounds in the human brain: a comparison of tumor and hippocampal tissue”, J. R. Soc. Interface, vol. 3, pp. 833–841, 2006.
11. S. Ullrich et al., “Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth”, J. Bacteriol, vol. 187, pp. 7176–7184, 2005.
12. A. Fernanda et al., “Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria”, The ISME J., vol. 5, pp. 1634–1640, 2011.
13. S.V. Gorobets and O.Yu. Gorobets,“Functions of biogenic magnetic nanoparticles in organisms”, Functional Mater., vol. 19, pp. 18–26, 2012.
14. Yu.I. Gorobets and S.V. Gorobets,“Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field”, Bull. of Herson State Tech. Un., vol. 3, no. 9, pp. 276–281, 2000.
15. S. Ullrich et al., “Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization”, PLoS One, vol. 6, no. 10, 2011.
16. S. Schübbe et al., “Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum gryphiswaldense”, Appl. Environ. Microbiol.,vol. 72, no. 9, pp. 5757–5765, 2006.
17. H. Nakazawa et al., “Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria”, Genome Res., vol. 19, pp. 1801–1808, 2009.
18. A.P. Taylor and J.C. Barry, “Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes”, J. Microsc., vol. 213, pp. 180–197, 2004.
19. J.L. Kirschvink et al.,“Magnetite-based magnetoreception”, Sensory systems, vol. 11, pp. 462–468, 2001.
20. K.W. Mandernack et al.,“Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria”, Sci., vol. 285, pp. 1892–1896, 1999.
21. Biello D.,“The Origin of Oxygen in Earth’s Atmosphere: The breathable air we enjoy today originated from tiny organisms, although the details remain lost in geologic time”, Sci. American, August 2009.
22. L.M. Tiede et al., “Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins”, Cell. Death Dis., vol. 2, p. 246, 2011.
23. E. Ortiz-Prado et al., “A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO2”, J. Neurosci Methods, vol. 193, no. 2, p. 217, 2010.
24. S. Osinsky and P.Vaupel, “Tumor Microphysiology. Metabolic Microenvironment of Tumor Cells: Characteristics, Impact on Tumor Progression, Clinical Implications”, in Sci. Book Project, Ukraine, Kiev: Naukova Dumka, 2009.
25. F.F. Guo et al. (2012). Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1 [Online]. Available: http:/ onlinelibrary.wiley.com.sci-hub.org/doi/10.1111 j.14622920.2012.02707.x/full
26. P. Ma et al. (2012). Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice [Online]. Available: http:/ www.ncbi.nlm.nih.gov.scihub.org/pmc/-articles/PMC3439859
27. P. Houdy et al., Nanoethics and nanotoxicology, Germany, Berlin: Springer Verlag, p. 620, 2011.
28. M. Winklhofer and N. Petersen, Paleomagnetism and Magnetic Bacteria, Germany, Berlin: Springer-Verlag, 2006, pp. 256–273.
29. O.Yu. Gorobets et al., “Quasi-stationary heterogeneous states of electrolyte at electrodeposition and etching process in a gradient magnetic field of a magnetized ferromagnetic ball”, J. MMM, vol. 330, pp. 76–80, 2013.
30. Yu.I. Gorobet and S.V. Gorobets, “Formation of stationary flows of liquid in visinity of ferromagnetic packing in constant magnetic field”, J. MHD, vol. 36, pp. 75–78, 2000.
31. K. Zhu et al., “Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea”, Res. Microbiol., vol. 161, pp. 276–283, 2010.
32. F.J. Friedlaender et al., “Particle Motion Near and Capture on Single Spheres in HGMS”, IEEE Trans. Magn., vol. 17, no. 6, pp. 2801–2803, 1981.
33. Pavlovich N.V. Magnitnai͡a vospriimchivost' organizmov. – M.: Nauka i tekhnika, 1985. – 111 s.
34. D.A. Bazylinski, “Synthesis of the bacterial magnetosome: the making of a magnetic personality”, Int. Microbiol., vol. 2, pp. 71–80, 1999.
35. D.A. Bazilynski et al., “Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium”, J. AEM, vol. 61, no. 9, pp. 3232–3239, 1995.
36. M. Kajimura et al., “Interactions of Multiple Gas Transducing Systems: Hallmarks and Uncertainties of CO, NO, and H2S Gas Biology”, J. ARS, vol. 13, no. 2, pp. 157–192, 2010.
37. I. Bertini et al., “NMR Spectroscopy of Paramagnetic Metalloproteins”, J. Chem. Bio. Chem., vol. 6, pp. 1536–1549, 2005.
38. S. Klein et al., “Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation”, J. BBRC., vol. 425, no. 2, pp. 393–397, 2012.
39. Ganshin V.M., Labas I͡U.A., Zinkevich Ė.P. Vozmozhnai͡a rol' aktivnykh form kisloroda v pervichnykh mekhanizmakh oboni͡atel'noĭ ret͡sept͡sii // Sensornye sistemy. – 2010. – 24. – S. 74–93.
40. X. Wang and L .Liang, “Effects of Static Magnetic Field on Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1”, J. BEMS, vol. 30, pp. 313 321, 2009.
41. Y.Cui et al. (2012). Deficits in Water Maze Performance and Oxidative Stress in the Hippocampus and Striatum Induced by Extremely Low Frequency Magnetic Field Exposure [Online]. Available: http://www.plosone.org/article/-info%3Ado %2F10.1371%2Fjournal.pone.0032196

Текст статтіРозмір
2013-3-6.pdf556.92 КБ

Тематичні розділи журналу

,