Гетерогенное состояние электролита при травлении стального шара в магнитном поле

Экспериментально исследован процесс формирования квазиравномерного гетерогенного состояния электролита под влиянием неоднородных магнитных полей намагниченного стального шара при его травлении в электролите, который представляет собой водный раствор серной, соляной или азотной кислоты. Экспериментально исследована форма межфазной границы в электролите, которая разделяет области (т.е. фазы) с разными магнитными восприимчивостями парамагнитных продуктов коррозии в неоднородном магнитном поле намагниченного стального шара. Экспериментально выявлены характерные времена формирования, существо вания и разрушения указанной межфазной границы. Предложена теоретическая модель, которая описывает форму области с повышенной концентрацией парамагнитных продуктов коррозии и которая объясняет экспериментальный факт неизменности ее формы и размеров в течение времени существования. Показано количественное согласование теоретической модели формы межфазной границы в электролите с экспериментальными данными.

Год издания: 
2012
Номер: 
4
УДК: 
57.088.55
С. 121—129. Іл. 7. Бібліогр.: 28 назв.
Литература: 

1. M.D. Pullins et al., “Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes”, J. Phys. Chem., vol. 105, no. 37, pp. 8989—8994, 2001.
2. I. Costa et al., “The effect of the magnetic field on the corrosion behavior of Nd-Fe-B permanent magnets”, J. of Magnetism and Magnetic Materials, vol. 278, no. 3, pp. 348—358, 2004.
3. S.V. Gorobets et al., “Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field”, Appl. Surf. Sci., vol. 252, no. 2, pp. 448—454, 2005.
4. M.Yu. Ilchenko et al., “Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid”, J. of Magnetism and Magnetic Materials, vol. 322, pp. 2075—2080, 2010.
5. O.Y. Gorobets and D.O. Derecha, “Quasi-periodic microstructuring of iron cylinder surface under its corrosion under combined electric and magnetic fields”, Materials Science-Poland, vol. 24, pp. 1017—1025, 2006.
6. Формирование медных покрытий железных образцов в неоднородном магнитном поле / Ю.И. Горобец,С.В. Горобец, Ю.А. Легенький и др. // Металлофизика и новейшие технологи. — 2006. — 28, № 12. — C. 1615— 1621.
7. F.J. Friedlaender et al., “Particle Buildup on Single Spheres in HGMS”, IEEE Trans. Magn., vol. 17, no. 6, pp. 2804—2806, 1981.
8. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. — М.: Наука, 1986. — 734 с.
9. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. — М.: Наука, 1995. — 608 с.
10. Киттель Ч. Введение в физику твердого тела. — М.: Наука, 1978. — 792 с.
11. Григорьев И.С., Мейлихов Е.З. Физические величины: Справочник. — М.: Энергоатомиздат, 1991. — 1232 с.
12. K. Alia et al., “Surface tensions and thermodynamic parameters of surface formation of aqueous salt solutions: III. Aqueous solution of KCl, KBr and KI”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 337, pp. 194—199, 2009.
13. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справ. пособие. — Л.: Химия, 1982. — 592 с.
14. Вонсовский С.В. Магнетизм. — М.: Наука, 1971. — 1032 с.
15. Кринчик Г.С. Физика магнитных явлений. — М.: МГУ, 1976. — 368 с.
16. Альтшулер С.А., Козырев Б.М. Электронный парамагнитный резонанс соединений элементов промежуточных групп. — М.: Наука, 1972. — 672 с.
17. Абрагам А., Гольдман М. Ядерный магнетизм: порядок и беспорядок. — М.: Мир, 1984. — 360 с.
18. M. Fujiwara et al., “On the movement of paramagnetic ions in an inhomogeneous magnetic field”, J. Phys. Chem. B, vol. 108, pp. 3531—3534, 2004.
19. Антропов Л.І. Теоретична електрохімія. — К.: Либідь, 1993. — C. 115, 146.
20. J.Y. Kim et al., “Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions”, J. Colloid Interface Sci., vol. 223, pp. 285—291, 2000.
21. P. Attard et al., “Nanobubbles: the big picture”, Physica A, vol. 314, pp. 696—705, 2002.
22. N. Ishda et al., “Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy”, Langmuir, vol. 16, no. 16, pp. 6377—6380, 2000.
23. J.W.G. Tyrrell and P. Attard, “Atomic Force Microscope Images of Nanobubbles on a Hydrophobic Surface and Corresponding Force-Separation Data”, Langmuir, vol. 18, no. 1, pp. 160—167, 2002.
24. F. Considine et al., “Forces measured between latex spheres in aqueous electrolyte: Non-DVLO behavior and sensitivity to dissolved gas”, Langmuir, vol. 15, no. 5, pp. 1657—1659, 1999.
25. J. Mahnke et al., “The Influence of Dissolved Gas on the Interactions between Surfaces of different Hydrophobicity in Aqueous Media Part I. Measurement of Interaction Forces”, Phys. Chem. Chem. Phys., vol. 1, pp. 2793— 2798, 1999.
26. N. Ishida et al., “Attraction between hydrophobic surfaces with and without gas phase”, Langmuir, vol. 16, no. 13, pp. 5681—5687, 2000.
27. G.E. Yakubov et al., “Interaction forces between hydrophobic surfaces. Attractive jump as an indication of formation of “stable” submicrocavities”, J. Phys. Chem. B, vol. 104, pp. 3407—3410, 2000.
28. Чехун В.Ф., Горобець С.В., Горобець О.Ю. Магнітовпорядковані сполуки ендогенного заліза і проблема впливу постійних магнітних полів на біосистеми // Біофізичний вісник. — 2010. — 25, № 2.— С. 123—130.

Полнотекстовый документSize
2012-4-21.pdf465.16 KB