Создание трансгенных растений салата, содержащих ген сшитого белка антигенов ESAT6:Ag85B из Mycobacterium tuberculosis

Трансгенные растения являются многообещающим и безопасным инструментом для создания съедобных вакцин. Иммунизация, что происходит в результате употребления в пищу растений, в которых проходит экспрессия туберкулезных антигенов, является перспективным подходом в борьбе с туберкулезом. В этой работе мы сообщаем о создании трансгенных растений салата (Lactuca sativa), содержащих ген сшитого белка антигенов Mycobacterium tuberculosis ESAT6:Ag85B. Трансгенные растения были получены методом трансформации с помощью Agrobacterium tumefaciens. В работе были использованы векторы, содержащие ген esxA, сшитый с геном fbpB. Также векторы содержали селективные гены: ген неомицинфосфотрансферазы (npt II) или фосфинотрицин ацетил-трансферазы (bar). На селективной среде были отобраны трансгенные растения салата. Наличие селективного и целевого генов в геноме этих растений было подтверждено с помощью ПЦР. Трансгенные растения салата были высажены в грунт в условиях теплицы для проведения последующих исследований.

Год издания: 
2013
Номер: 
3
УДК: 
577.222.7:581.1
С. 65–69. Іл. 4. Табл. 1. Бібліогр.: 18 назв.
Литература: 

1. Татьков С.И., Дейнеко Е.В., Фурман Д.П. Перспективы создания противотуберкулезных вакцин нового поколения // Вавиловский журнал генетики и селекции. — 2011. — 15, № 1. — С. 114—128.
2. D. Young and C. Dye, “The development and impact of tuberculosis vaccines”, Cell, vol. 124, pp. 683—687, 2006.
3. I.M. Orme, “Current progress in tuberculosis vaccine development”, Vaccine, vol. 23, no. 18, pp. 2105—2108, 2005.
4. P. Andersen and T.M. Doherty, “Learning from BCG: Designing a better tuberculosis vaccine”, Discov. Med., vol. 5, no. 28, pp. 383—387, 2005.
5. J.A. Langermans et al., “Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6”, Vaccine, vol. 23, no. 21, pp. 2740—2750, 2005.
6. J. Davila et al., “Assessment of the genetic diversity of Mycobacterium tuberculosis esxA, esxH, and fbpB genes among clinical isolates and its implication for the future immunization by new tuberculosis subunit vaccines Ag85B-ESAT-6 and Ag85B-TB10.4”, J. Biomed. Biotechnol., 6 p., Jun. 2010.
7. C. Agaard et al., “A multistage tuberculosis vaccine that confers efficient protection before and after exposure”, nNat. Med., vol. 17, no. 2, pp. 189—194, 2011.
8. Y.L. Dorokhov et al., “Superexpresion of tuberculosis antigens nin plant leaves”, Tuberculosis, vol. 87, no. 3, pp. 218—224, 2007.
9. A.W. Olsen et al., “Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model”, Infection and Immunity, vol. 72, no. 10, pp. 6148—6150, 2004.
10. S. Tiwari et al., “Plants as bioreactors for the production of vaccine antigens”, Biotechnol. Adv., vol. 27, no. 4, pp. 449—467, 2009.
11. Трансгенные растения для фармакологии / Е.Б. Ру- кавцова, Я.И. Бурьянов, Н.Я. Шульга, В.А. Быков // Вопр. биолог., мед. и фарм. химии. — 2006. — № 2. — С. 3—12.
12. C.O. Tacket et al., “Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes”, J. Infect. Dis., vol. 182, no. 1, pp. 302—305, 2000.
13. L.J. Richer et al., “Production of hepatitis B surface antigen in transgenic plants for oral immunization”, Nat. Biotechnol., vol. 18, no. 11, pp. 1167—1171, 2000.
14. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue culture”, Physiologia Plantarum, vol. 15, pp. 473—497, 1962.
15. O. Gamborg et al., “Nutrient reguirements of suspesion cultures of soybean root cells”, Exp. Cell Res., vol. 50, pp. 151—158, 1968.
16. J.J. Doyle and J.L. Doyle, “Isolation of plant DNA from fresh tissue”, Focus, vol. 12, pp. 13—15, 1990.
17. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование / Пер. с англ. — М.: Мир, 1984. — 545 с.
18. Агробактериальная трансформация салата (Lactuca sativa L.) конструкциями, несущими гены антибактериальных антигенов Mycobacterium tuberculosis / Н.А. Матвеева, М.Ю. Василенко, А.М. Шаховский, Н.В. Кучук // Цитология и генетика. — 2009. — № 2. — С. 27—32.

Транслитерированый список литературы: 

1. Tat'kov S.I., Deĭneko E.V., Furman D.P. Perspektivy sozdanii͡a protivotuberkuleznykh vakt͡sin novogo pokolenii͡a // Vavilovskiĭ zhurnal genetiki i selekt͡sii. – 2011. – 15, # 1. – S. 114–128.
2. D. Young and C. Dye, “The development and impact of tuberculosis vaccines”, Cell, vol. 124, pp. 683–687, 2006.
3. I.M. Orme, “Current progress in tuberculosis vaccine development”, Vaccine, vol. 23, no. 18, pp. 2105–2108, 2005.
4. P. Andersen and T.M. Doherty, “Learning from BCG: Designing a better tuberculosis vaccine”, Discov. Med., vol. 5, no. 28, pp. 383–387, 2005.
5. J.A. Langermans et al., “Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6”, Vaccine, vol. 23, no. 21, pp. 2740–2750, 2005.
6. J. Davila et al., “Assessment of the genetic diversity of Mycobacterium tuberculosis esxA, esxH, and fbpB genes among clinical isolates and its implication for the future immunization by new tuberculosis subunit vaccines Ag85B-ESAT-6 and Ag85B TB10.4”, J. Biomed. Biotechnol., 6 p., Jun. 2010.
7. C. Agaard et al., “A multistage tuberculosis vaccine that confers efficient protection before and after exposure”, Nat. Med., vol. 17, no. 2, pp. 189–194, 2011.
8. Y.L. Dorokhov et al., “Superexpresion of tuberculosis antigens in plant leaves”, Tuberculosis, vol. 87, no. 3, pp. 218 224, 2007.
9. A.W. Olsen et al., “Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the serosol guinea pig model”, Infection and Immunity, vol. 72, no. 10, pp. 6148–6150, 2004.
10. S. Tiwari et al., “Plants as bioreactors for the production of vaccine antigens”, Biotechnol. Adv., vol. 27, no. 4, pp. 449 467, 2009.
11. Transgennye rastenii͡a dli͡a farmakologii / E.B. Rukavt͡sova, I͡A.I. Bur'i͡anov, N.I͡A. Shul'ga, V.A. Bykov // Vopr. biolog., med. i farm. khimii. – 2006. – # 2. – S. 3–12.
12. C.O. Tacket et al., “Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes”, J. Infect. Dis., vol. 182, no. 1, pp. 302–305, 2000.
13. L.J. Richer et al., “Production of hepatitis B surface antigen in transgenic plants for oral immunization”, Nat. Biotechnol., vol. 18, no. 11, pp. 1167–1171, 2000.
14. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue culture”, Physiologia Plantarum, vol. 15, pp. 473–497, 1962.
15. O. Gamborg et al., “Nutrient reguirements of suspesion cultures of soybean root cells”, Exp. Cell Res., vol. 50, pp. 151–158, 1968.
16. J.J. Doyle and J.L. Doyle, “Isolation of plant DNA from fresh tissue”, Focus, vol. 12, pp. 13–15, 1990.
17. Maniatis T., Frich Ė., Sėmbruk Dzh. Metody geneticheskoĭ inzhenerii. Molekuli͡arnoe klonirovanie / Per. s angl. – M.: Mir, 1984. – 545 s.
18. Agrobakterial'nai͡a transformat͡sii͡a salata (Lactuca sativa L.) konstrukt͡sii͡ami, nesushchimi geny antibakterial'nykh antigenov Mycobacterium tuberculosis / N.A. Matveeva, M.I͡U. Vasilenko, A.M. Shakhovskiĭ, N.V. Kuchuk // T͡Sitologii͡a i gene¬tika. – 2009. – # 2. – S. 27–32.

Полнотекстовый документSize
2013-3-10.pdf521.79 KB

Тематичні розділи журналу

,