Агробактерии в качестве потенциальных продуцентов магниточувствительных наноструктур

Выявлены гомологи белков синтеза магнетита группы Mam Magnetospirillum gryphiswaldense MSR-1 в протеоме агробактерий (АБ) и их растений-хозяев. Идентификацию белков-гомологов осуществляли путем проведения попарных выравниваний с помощью онлайн-ресурса BLAST-NCBI. Установлено, что штаммы симбиотических и патогенных АБ, способные к формированию клубеньков корней растений, и их типичные растения-хозяева содержат гомологи белков, без которых невозможна биоминерализация биогенных магнитных наночастиц у магнитотаксисных бактерий – MamВ, MamМ, MamЕ та MamО. И показано, что гомо-логи каждого из белков имеют подобный фолдинг, одинаковые функции с соответствующими белками магнитотаксисных бактерий. Таким образом, симбиотические и патогенные АБ, а также растения-хозяева, могут быть потенциальными продуцентами биогенных магнитных наночастичек или магниточувствительных наноструктур.

Год издания: 
2014
Номер: 
3
УДК: 
77.1
С. 26–32., Табл. 1. Бібліогр.: 26 назв.
Литература: 

1. I.E. Dodueva et al., “Plant Tumorigenesis: Different Ways for Shifting Systemic Control of Plant Cell Division and Differentiation”, Transgenic Plant Journal, vol. 1(1), pp. 17—38, 2007.
2. T. Tzfira and V. Citovsky, Eds., Agrobacterium: From Biology to Biotechnology. New York: Springer, 2008, 735 p.
3. P.M. Merritt et al., “Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation”, J. of Bacteriol., vol. 189, no. 22, рp. 8005— 8014, 2007.
4. J. Prell and P. Poole, “Metabolic changes of rhizobia in legume nodules”, Trends in Microbiol., vol. 14, no. 4, рp. 161—168, 2006.
5. D. Amelia et al., “Mechanisms and Regulation of Polar Surface Attachment in Agrobacterium tumefaciens”, Curr. Opin. Microbiol, vol. 12(6), рp. 708—714, December 2009.
6. A.C. Braun, “Stages in the life history of Phytomonas tumefaciens”, J. Bacteriol., no. 52, рp. 695—702, 1946.
7. M. Janczarek, “Environmental Signals and Regulatory Pathways That Influence”, Int. J. Mol. Sci., vol. 12, рp. 7898—7933, 2011.
8. W.S. Wu, “The signaling mechanism of ROS in tumor progression”, Cancer Metastasis Rev., vol. 25(4), pp. 695— 705, 2006.
9. V.F. Chekhun et al., “Magnetic nanostructures in tumour cells”, Research bulletin of the National Academy of Sciences of Ukraine, no. 9, 2011.
10. V.F. Chekhun et al., “Magnetically ordered nanostructures of endogenous origin in Erlich carcinoma cells”, Nanostructural science of materials (Ukrainian Journal), no. 2, 2011.
11. Yu.I. Gorobets and S.V. Gorobets, “Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field”, Bulletin of Kherson State Technical University (Ukrainian Journal), vol. 3(9), pp. 276—281, 2000.
12. Y.-X. Jing et al., “Effect of magnetic field on symbiotic nitrogen fixation of soybean nodules”, Acta Botanica Sinica, vol. 34, no. 5, pp. 364—368, 1992.
13. R. Bajwa et al., “Effect of electromagnetism on nodulation, vesicular arbuscular mycorrhizal infection and top growth of chickpea. I. Response of electromagnetized rhizobium”, J. of Phytopathology, vol. 7(1), pp. 76—77, 1995.
14. M.B. Vainshtein et al., “A new type of magnetosensitive inclusions in cells of photosynthetic purple bacteria”, Syst. Appl. Microbiol, no. 20, pp. 182—186, 1997.
15. A. Komeili, “Molecular Mechanisms of Compartmentalization and Biomineralization in Magnetotactic Bacteria”, FEMS Microbiol Rev., vol. 36(1), pp. 232—255, 2012.
16. D. Schuler, “Genetics and cell biology of magnetosome formation in magnetotactic bacteria, FEMS Microbiol. Rev., vol. 32, pp. 654—672, 2008.
17. Basic Local Alignment Search Tool [Online]. Available: http://blast.ncbi.nlm.nih.gov/
18. W. Li et al., “Saturated BLAST: an automated multiple intermediate sequence search used to detect distant homology”, Bioinformatics, vol. 16, no. 12, pp. 1105— 1110, 2000.
19. D. Schuler, “Characterization of the magnetosome membrane in Magnetospirillum gryphiswaldense”, in Biomineralization of nano- and microstructures. Ch. 8, E. Bauerlein, Ed. Weinheim: Wiley-VCH, 2000, pp. 109—118.
20. A. Komeili et al., “Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation”, PNAS, vol. 101, no. 11, pp. 3839—3844, 2004.
21. Uniprot [Online]. Available: http://www.uniprot.org/ uniprot/ F6EAD5 22. B.Z. Harris and W.A. Lim, “Mechanism and role of PDZ domains in signaling complex assembly”, J. of Cell Science, vol. 114, pp. 3219—3231, 2011.
23. W. Yang et al., “mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1”, Res. Microbiol., vol. 161, no. 8, pp. 701—705, 2010.
24. W. Yang et al., “Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1”, Environ. Microbiol., vol. 14, is. 7, pp. 1722—1729, 2012.
25. Gorobets O.Yu. et al., “Biogenic Magnetic Nanoparticles: Biomineralization in Prokaryotes and Eukaryotes”, Accepted for publication in Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed., 2014.
26. Чехун В.Ф., Горобець С.В., Горобець О.Ю. та ін. Маг- ніточутливі наноструктури ендогенного походження у клітинах карциноми Ерліха // Наноструктурное ма- териаловед. — 2011. — № 2. — C. 102—109.

Транслитерированый список литературы: 

1. I.E. Dodueva et al., “Plant Tumorigenesis: Different Ways for Shifting Systemic Control of Plant Cell Division and Differentiation”, Transgenic Plant Journal, vol. 1(1), pp. 17–38, 2007.
2. T. Tzfira and V. Citovsky, Eds., Agrobacterium: From Biolo¬gy to Biotechnology. New York: Springer, 2008, 735 p.
3. P.M. Merritt et al., “Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation”, J. of Bacteriol., vol. 189, no. 22, рp. 8005–8014, 2007.
4. J. Prell and P. Poole, “Metabolic changes of rhizobia in legume nodules”, Trends in Microbiol., vol. 14, no. 4, рp. 161–168, 2006.
5. D. Amelia et al., “Mechanisms and Regulation of Polar Surface Attachment in Agrobacterium tumefaciens”, Curr. Opin. Microbiol, vol. 12(6), рp. 708–714, Decem¬ber 2009.
6. A.C. Braun, “Stages in the life history of Phytomonas tumefaciens”, J. Bacteriol., no. 52, рp. 695–702, 1946.
7. M. Janczarek, “Environmental Signals and Regulatory Pathways That Influence”, Int. J. Mol. Sci., vol. 12, рp. 7898–7933, 2011.
8. W.S. Wu, “The signaling mechanism of ROS in tumor progression”, Cancer Metastasis Rev., vol. 25(4), pp. 695–705, 2006.
9. V.F. Chekhun et al., “Magnetic nanostructures in tumour cells”, Research bulletin of the National Academy of Sciences of Ukraine, no. 9, 2011.
10. V.F. Chekhun et al., “Magnetically ordered nanostruc¬tures of endogenous origin in Erlich carcinoma cells”, Nanostructural science of materials (Ukrainian Journal), no. 2, 2011.
11. Yu.I. Gorobets and S.V. Gorobets, “Stationary flows of electrolytes in the vicinity of ferromagnetic particles in a constant magnetic field”, Bulletin of Kherson State Technical University (Ukrainian Journal), vol. 3(9), pp. 276–281, 2000.
12. Y.-X. Jing et al., “Effect of magnetic field on symbiotic nitrogen fixation of soybean nodules”, Acta Botanica Sinica, vol. 34, no. 5, pp. 364–368, 1992.
13. R. Bajwa et al., “Effect of electromagnetism on nodu¬lation, vesicular arbuscular mycorrhizal infection and top growth of chickpea. I. Response of electromagnetized rhizobium”, J. of Phytopathology, vol. 7(1), pp. 76–77, 1995.
14. M.B. Vainshtein et al., “A new type of magnetosensitive inclusions in cells of photosynthetic purple bacteria”, Syst. Appl. Microbiol, no. 20, pp. 182–186, 1997.
15. A. Komeili, “Molecular Mechanisms of Compartmen¬talization and Biomineralization in Magnetotactic Bacte¬ria”, FEMS Microbiol Rev., vol. 36(1), pp. 232–255, 2012.
16. D. Schuler, “Genetics and cell biology of magnetosome formation in magnetotactic bacteria, FEMS Microbiol. Rev., vol. 32, pp. 654–672, 2008.
17. Basic Local Alignment Search Tool [Online]. Available: http://blast.ncbi.nlm.nih.gov/
18. W. Li et al., “Saturated BLAST: an automated multiple intermediate sequence search used to detect distant homology”, Bioinformatics, vol. 16, no. 12, pp. 1105–1110, 2000.
19. D. Schüler, “Characterization of the magnetosome mem¬brane in Magnetospirillum gryphiswaldense”, in Biomi¬neralization of nano- and microstructures. Ch. 8, E. Bäu-erlein, Ed. Weinheim: Wiley-VCH, 2000, pp. 109–118.
20. A. Komeili et al., “Magnetosome vesicles are present be¬fore magnetite formation, and MamA is required for their activation”, PNAS, vol. 101, no. 11, pp. 3839–3844, 2004.
21. Uniprot [Online]. Available: http://www.uniprot.org/ uniprot/ F6EAD5
22. B.Z. Harris and W.A. Lim, “Mechanism and role of PDZ domains in signaling complex assembly”, J. of Cell Science, vol. 114, pp. 3219–3231, 2011.
23. W. Yang et al., “mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospiri¬llum gryphiswaldense MSR-1”, Res. Microbiol., vol. 161, no. 8, pp. 701–705, 2010.
24. W. Yang et al., “Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswal¬dense MSR-1”, Environ. Microbiol., vol. 14, is. 7, pp. 1722–1729, 2012.
25. Gorobets O.Yu. et al., “Biogenic Magnetic Nanoparticles: Biomineralization in Prokaryotes and Eukaryotes”, Accepted for publication in Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed., 2014.
26. Chekhun V.F., Horobet͡s′ S.V., Horobet͡s′ O.I͡u. ta in. Mahnitochutlyvi nanostruktury endohennoho pokhodz͡henni͡a u klitynakh kart͡synomy Erlikha // Nanostrukturnoe materyaloved. – 2011. – # 2. – S. 102–109.

Полнотекстовый документSize
2014-3-4.pdf172.29 KB