Формирование структуры и фазового состава эквиатомных сплавов системы Cu–Ni–Al–Fе–Cr в процессе механического легирования

Автори

Нанокристаллические высокоэнтропийные сплавы экви¬атомного состава системы Cu–Ni–Al–Fе–C от двухкомпонентного сплава CuNi до пятикомпонентного сплава CuNiAlFеCr синтезированы методом механического леги¬рования (МЛ). Методом рентгеноструктурного анализа иссле¬дован переход фазовых и структурных преобразований при формировании серии сплавов системы Cu–Ni–Al–Fе–C в процессе МЛ при добавлении компонентов порошковых смесей в последовательности Cu, Ni, Al, Fe и Cr. В двойном CuNi-сплаве формируется твердый раствор с гранецентрированной кубической структурой в нанокристал¬лическом состоянии, тогда как в CuNiAl, CuNiAlFe и CuNiAlFeCr сплавах образуется нанокристаллический твердый раствор с объемноцентрированной кубической структурой, которая в конце МЛ становится рентгено-аморфной. Образование вторичных интерметаллидных фаз не обнаружено. Установлена последовательность растворения компонентов указанной системы в процессе МЛ, и показано, что скорость растворения коррелирует с температурой плавления элементов сплава благодаря ее влиянию на их диффузию в твердом состоянии.
Ключевые слова: высокоэнтропийные сплавы, механическое легирование, рентгеновский анализ, структура, фазовый состав, диффузия.
Ил. 4. Табл. 5. Библиогр.: 20 назв.

Год издания: 
2014
Номер: 
5
УДК: 
620.22:620.187.22:543.442.3
С. 89–95., Іл. 4. Табл. 5. Бібліогр.: 20 назв.
Литература: 

1. J.W. Yeh et al., “Nanostructured high—entropy alloys with multyple principal elements; novel alloy design concepts and outcomes”, J. Adv. Eng. Mater., vol. 6, no. 5, pp. 299—303, 2004.
2. J.W. Yeh et al., “Formation of simple crystal structures in Cu—Co—Ni—Cr—Al—Fe—Ti—V alloys with multiprincipal metallic elements”, J. Metall. Mater. Trans., vol. 35A, no. 8, pp. 2533—2536, 2004.
3. P.K. Huang et al., “Multi—Principal—Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating”, J. Adv. Eng. Mater. vol. 6, no. 1-2, pp. 74—78, 2004.
4. J.W. Yeh, “Recent progress in high—entropy alloys”, J. Ann. Chim. Sci. Mat., vol. 31, no. 6. pp. 633—648, 2006.
5. Y. Zhang et al., “Solid—Solution Phase Formation Rules for Multi—component Alloys”, J. Adv. Eng. Mater., vol. 10, no. 6, pp. 534—538, 2008.
6. J.-W. Yeh et al., “High—Entropy Alloys — A New Era of Explotation”, Mater. Sci. Forum, no. 560. pp. 1—9, 2007.
7. X. Yang et al., “Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys”, J. Procedia Eng., no. 36, pp. 292—298, 2012.
8. A.L. Greer, “Thermodynamics of Solids”, Nature, no. 336, pp. 303—304, 1993.
9. S. Guo and C.T. Liu, “Phase Stability in HEAs: Phase stability in high entropy alloys:Formation of solid—solution phase or amorphous phase”, Progress in Material Sc.: Materials Int., no. 21, pp. 433—446, 2011.
10. B. Cantor et al., “Microstructural development in equiatomic multicomponent alloys”, J. Mater. Sci. Eng. A., no. 375—377, pp. 213—218, 2004.
11. S. Varalakshmi et al., “Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High—Entropy Alloys by Mechanical Alloying”, Metallurgical and Materials Trans. A, vol. 10, no. 41, pp. 2703—2709, 2010.
12. Y. Zhang and Y.J. Zhou, “Solid solution formation criteria for high entropy alloys”, Materials Sci. Forum, no. 561- 565, pp. 1337—1339, 2007.
13. D.A. Porter and K.E. Easterling, Phase Transformations in Metals аnd Alloys. London: Chapman & Hall, 1992, 514 p.
14. C. Kittel, Introduction to Solid State Physics. New York: John Wiley & Sons, 1996, 673 p.
15. F.R. de Boer, Cohesion in Metals. New York: Elsevier Scientific Pub. Co, 1988, 482 p.
16. A. Takeuchi and A. Inoue, “Calculation of mixing enthalpy and mismatch entropy for ternary amorphous alloys”, Mater. Trans., no. 41, pp. 1372—1378, 2000.
17. A.I. Yurkova et al., “Structure and Mechanical Properties of Iron Resulted from Surface Severe Plastic Deformation by Friction with Semultaneous Nitrogen Saturation: I. Fetures of Structure Formation”, Metally, no. 4, pp. 274—281, 2012.
18. P.P. Chattopadhyay et al., “Microstructure/phase evolution in mechanical alloying milling of stainless steel and aluminum powder blends”, Metall. Mater. Tras. A., no. 38A, pp. 2298—2307, 2007.
19. L. Schultz, “Formation of Amorphous Metals by Solid— State Reactions”, Philos. Mag. B, no. 61, pp. 453—471, 1990.
20. H.X. Sui et al., “The enhancement of solid solubility limits of AlCo intermetallic compound by high‐energy ball milling”, J. Appl. Phys., no. 71, pp. 2945—2949, 1992.

Транслитерированый список литературы: 

1. J.W. Yeh et al., “Nanostructured high–entropy alloys with multyple principal elements; novel alloy design concepts and outcomes”, J. Adv. Eng. Mater., vol. 6, no. 5, pp. 299–303, 2004.
2. J.W. Yeh et al., “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements”, J. Metall. Mater. Trans., vol. 35A, no. 8, pp. 2533–2536, 2004.
3. P.K. Huang et al., “Multi–Principal–Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating”, J. Adv. Eng. Mater. vol. 6, no. 1-2, pp. 74–78, 2004.
4. J.W. Yeh, “Recent progress in high–entropy alloys”, J. Ann. Chim. Sci. Mat., vol. 31, no. 6. pp. 633–648, 2006.
5. Y. Zhang et al., “Solid–Solution Phase Formation Rules for Multi–component Alloys”, J. Adv. Eng. Mater., vol. 10, no. 6, pp. 534–538, 2008.
6. J.-W. Yeh et al., “High–Entropy Alloys – A New Era of Explotation”, Mater. Sci. Forum, no. 560. pp. 1–9, 2007.
7. X. Yang et al., “Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys”, J. Procedia Eng., no. 36, pp. 292–298, 2012.
8. A.L. Greer, “Thermodynamics of Solids”, Nature, no. 336, pp. 303–304, 1993.
9. S. Guo and C.T. Liu, “Phase Stability in HEAs: Phase stability in high entropy alloys:Formation of solid–solution phase or amorphous phase”, Progress in Material Sc.: Materials Int., no. 21, pp. 433–446, 2011.
10. B. Cantor et al., “Microstructural development in equiatomic multicomponent alloys”, J. Mater. Sci. Eng. A., no. 375–377, pp. 213–218, 2004.
11. S. Varalakshmi et al., “Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High–Entropy Alloys by Mechanical Alloying”, Metallurgical and Materials Trans. A, vol. 10, no. 41, pp. 2703–2709, 2010.
12. Y. Zhang and Y.J. Zhou, “Solid solution formation criteria for high entropy alloys”, Materials Sci. Forum, no. 561-565, pp. 1337–1339, 2007.
13. D.A. Porter and K.E. Easterling, Phase Transformations in Metals аnd Alloys. London: Chapman & Hall, 1992, 514 p.
14. C. Kittel, Introduction to Solid State Physics. New York: John Wiley & Sons, 1996, 673 p.
15. F.R. de Boer, Cohesion in Metals. New York: Elsevier Scientific Pub. Co, 1988, 482 p.
16. A. Takeuchi and A. Inoue, “Calculation of mixing enthalpy and mismatch entropy for ternary amorphous alloys”, Mater. Trans., no. 41, pp. 1372–1378, 2000.
17. A.I. Yurkova et al., “Structure and Mechanical Properties of Iron Resulted from Surface Severe Plastic Deformation by Friction with Semultaneous Nitrogen Saturation: I. Fetures of Structure Formation”, Metally, no. 4, pp. 274–281, 2012.
18. P.P. Chattopadhyay et al., “Microstructure/phase evolution in mechanical alloying milling of stainless steel and aluminum powder blends”, Metall. Mater. Tras. A., no. 38A, pp. 2298–2307, 2007.
19. L. Schultz, “Formation of Amorphous Metals by Solid–State Reactions”, Philos. Mag. B, no. 61, pp. 453–471, 1990.
20. H.X. Sui et al., “The enhancement of solid solubility limits of AlCo intermetallic compound by high‐energy ball milling”, J. Appl. Phys., no. 71, pp. 2945–2949, 1992.

Полнотекстовый документSize
2014-5-12.pdf293.51 KB

Тематичні розділи журналу

,