стационарный гауссовский шум

Предельные теоремы для экстремальных невязок в нелинейной модели регрессии с гауссовским стационарным шумом

В работе рассмотрена нелинейная модель регрессии с гауссовским стационарным случайным шумом и непрерывным временем. Исследовано поведение нормированного определенным образом максимума невязок и максимума абсолютных величин невязок, в которые вместо неизвестного параметра функции регрессии подставлена его оценка наименьших квадратов. Доказана сходимость распределения этого нормированного максимума к двойной экспоненте, что следует из предположения о гауссовости случайного шума.

Асимптотические разложения моментов оценки наименьших квадратов векторного параметра нелинейной регрессии с коррелированными наблюдениями

Рассмотрена нелинейная модель регрессии с непрерывным временем и непрерывным в среднем квадратичном сепарабельным измеримым гауссовым стационарным случайным шумом с нулевым средним и абсолютно интегрируемой ковариационной функцией. Оценивание параметров таких моделей является важной задачей статистики случайных процессов. Найдены первые члены асимптотических разложений вектора смещения и ковариационной матрицы оценки наименьших квадратов векторного параметра нелинейной функции регрессии.