нелінійна модель регресії
Консистентність оцінки найменших квадратів параметрів лінійної регресії у випадку дискретного часу і сильно- або слабкозалежних регресорів
Розглянуто лінійні моделі регресії з дискретним часом, сильно- і слабкозалежним випадковим шумом і регресорами, які залежать від часу та спостерігаються з сильно- і слабкозалежними похибками. Задача оцінювання параметрів таких моделей є важливим завданням статистики випадкових процесів. Для оцінювання вибрано широковживану оцінку найменших квадратів. Досліджено властивості консистентності оцінки найменших квадратів параметрів таких моделей.
Граничні теореми для екстремальних залишків у нелінійній моделі регресії з гауссовим стаціонарним шумом
У статті розглянуто нелінійну модель регресії з гауссовим стаціонарним випадковим шумом і неперервним часом. Досліджено поведінку нормованого певним чином максимуму залишків і максимуму абсолютних величин залишків, у які замість невідомого параметра функції регресії підставлена його оцінка найменших квадратів. Доведено збіжність розподілу цього нормованого максимуму до подвійної експоненти, що випливає з припущення про гауссовість випадкового шуму.
Асимптотичні розклади моментів оцінки найменших квадратів векторного параметра нелінійної регресії з корельованими спостереженнями
Розглянуто нелінійну модель регресії з неперервним часом і неперервним у середньому квадратичному сепарабельним вимірним гауссовим стаціонарним випадковим шумом з нульовим середнім і абсолютно інтегровною коваріаційною функцією. Оцінювання параметрів таких моделей є важливою задачею статистики випадкових процесів. Знайдено перші члени асимптотичних розкладів вектора зсуву і коваріаційної матриці оцінки найменших квадратів векторного параметра нелінійної функції регресії. При отриманні результатів використовувався апарат теорії випадкових процесів і асимптотичної теорії нелінійної регресії.